Derivative Test

- 9 derivatives
- 2 equations of tangents (Cat I and II)
- 1 differentiability
- 1 definition of derivative
- 1 Always, Sometimes, Never about continuity and differentiability
- 14 @ 5: 70 points

Like last test--the following problems are NOT a comprehensive review--they are primarily to demonstrate *presentation* of solutions

1. Find the derivative of $f(x) = \frac{x^3 - 8x^2 + 2}{\sqrt{x}}.$ $f'(x) = \frac{\left(3x^2 - 10x\right) - \left(x^3 - 8x^2 + 2\right)}{\left(x^3 - 8x^2 + 2\right)} \frac{1}{20x}$

2. Find the derivative of $f(x) = -\sin(4x - 9)$.

$$f'(x) = (-\cos(4x-9))(4)$$

OR

 $f'(x) = -4\cos(4x-9)$

3. Find the derivative of $f(x) = \sec^2 3x^4$.

4. Find the derivative of $f(x) = \tan 2x \cos 5x$.

 $f'(x) = (\tan 2x)(-\sin 5x)(s) + (\cos 5x)(\sec^2 2x)(s)$

5. Find the derivative of $f(x) = \frac{2x^3 + 7x}{x^2 - 3x}$.

 $f'(x) = \frac{(x^2-3x)((6x^2+7)-(2x^3+7x)(2x-3)}{(x^2-3x)^2}$

6. Find the derivative of $g(x) = -2x^3\sqrt{x^3 - 1}$.

$$g'(x) = (-2x^3) \frac{3x^2}{2\sqrt{x^3-1}} + (\sqrt{x^3-1})(-6x^2)$$

$$P_{1}(X) = \frac{5Lx}{\frac{5Lx}{1}}$$

$$P(X) = \frac{5Lx}{1}$$

7. Find an equation of the tangent to the curve $y = 3x^2 - 4x + 1$ at x = 2.

$$y(x) = |2-8+1=5 \implies (2,5).$$

$$\frac{dy}{dx} = 6x-4$$

$$\frac{dy}{dx} = 8 \implies m_{T}=8$$

$$\frac{dy}{dx} = 8 \implies m_{T}=8$$

$$y = S = 8(x-2)$$

8. Find an equation of the tangent to $y = x^4 - 1$ that is parallel to 64x - 2y + 7 = 0.

Slope of given line is 32 -> M7=32

$$\frac{dy}{dx} = 4x^3$$

 $4x^3 = 32 \rightarrow x=2 \rightarrow y=15 \rightarrow (2,15)$

$$y - 15 = 32(x - 2)$$
.

9. Given $f(x) = \cos x$, find $f^{219}(x)$.

$$54R3$$

$$4) 219$$

$$f^{219}(x) = f'''(x)$$

$$f'(x) = -\sin x$$

$$f''(x) = -\cos x$$

$$f'''(x) = \sin x$$

$$f'''(x) = \sin x$$

$$f^{319}(x) = \sin x$$

10. At what values of x is the following function NOT differentiable? Make sure you completely justify your answer.

$$f(x) = \begin{cases} x+5 & \text{if } x \le -1 \\ 4x^2 & \text{if } -1 < x < 1 \\ 3-x & \text{if } x \ge 1 \end{cases}$$

$$f'/x = \begin{cases} 1 & x < -1 \\ 8x & -1 < x < 1 \\ -1 & x > 1 \end{cases}$$

Since f'_(-1) = -8 but f'_(-1)=1 -> f'(-1) \$\frac{1}{2}\$

: f not deff at x=-1

Since f'+(1)=-1 but f'-(1)=8-> f'(1) \$\frac{1}{2}\$

... \if not deff at x=1.

11. Given
$$g(x) = \sqrt{\frac{x-1}{4-x}}$$
, find $g'(x)$.

$$g'(x) = \frac{(4-x)^{2}}{2\sqrt{\frac{x-1}{4-x}}}$$

12. Suppose h(x) = g(f(x)) and f(2) = 6, f'(2) = -3, g(2) = 4 and g'(6) = 8. Find h'(2).

$$h'(x) = g'(f(x)) \cdot f'(x)$$

$$h'(a) = g'(f(a)) \cdot f'(a)$$

$$= g'(6)(-3)$$

$$= (8)(-3)$$

$$= -24$$

Given $f(x) = x^2 + x + 1$, find f'(x) using the definition of derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 + (x+h) + 1 - (x^2 + x + 1)}{h}$$

$$= 2x + 1$$