

- 19. The figure above shows the graph of the function g and the line tangent to the graph of g at x = -1. Let h be the function given by $h(x) = e^x \cdot g(x)$. What is the value of h'(-1)?

 - (A) $\frac{9}{e}$ (B) $\frac{-3}{e}$ (C) $\frac{-6}{e}$ (D) $\frac{-6}{e} \frac{3}{e^2}$ (E) -6

20. For
$$x > 0$$
, $\frac{d}{dx} \left(\int_0^{2x} \ln(t^3 + 1) dt \right) =$

- (A) $\ln(x^3+1)$

- (D) $2\ln(8x^3+1)$
- (E) $24x^2 \ln(8x^3 + 1)$

$$\frac{d}{c\ell_X} \begin{pmatrix} x \\ x \\ a \end{pmatrix}$$

Graph of f

- 21. The graph of a function f is shown above. What is the value of $\int_0^7 f(x) dx$?
 - (A) 6
- (B) 8
- (C) 10
- (D) 14
- (E) 18

- 22. The function f is continuous for all real numbers, and the average rate of change of f on the closed interval [6, 9] is $-\frac{3}{2}$. For 6 < c < 9, there is no value of c such that $f'(c) = -\frac{3}{2}$. Of the following, which must be true?
 - (A) $\frac{1}{3} \int_{6}^{9} f(x) dx = -\frac{3}{2}$
 - (B) $\int_6^9 f(x) dx$ does not exist.
 - (C) $\frac{f'(6) + f'(9)}{2} = -\frac{3}{2}$
 - (D) f'(x) < 0 for all x in the open interval (6, 9).
 - (E) f is not differentiable on the open interval (6, 9).

- 23. Let f be the function defined by $f(x) = 2x + e^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0, 1) is on the graph of f, what is the value of g'(1)?

 - (A) $\frac{1}{2+e}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 3 (E) 2+e

(f-')'(1)

(0,1) on $f \rightarrow (f^{-1})'(1) = \frac{1}{f'(0)}$

 $f'(x) = 2 + c^{x}$

f'(0)=2+e0=3

24. The function g is given by $g(x) = 4x^3 + 3x^2 - 6x + 1$. What is the absolute minimum value of g on the closed interval [-2, 1]?

(A) -7 (B) $-\frac{3}{4}$ (C) 0 (D) 2

$$g'/x = |2x^{2} + 6x - 6$$

$$2x^{2} + x - 1$$

$$(2x - 1)(x + 1)$$

$$x = \frac{1}{2} - x = -1$$

$$g(-3) = -32 + 12 + 12 + 1 = -7$$

25. Which of the following is the solution to the differential equation
$$\frac{dy}{dx} = e^{y+x}$$
 with the initial condition $y(0) = -\ln 4$?

(A) $y = -x - \ln 4$

(B) $y = x - \ln 4$

(C) $y = -\ln(-e^x + 5)$

(D) $y = -\ln(e^x + 3)$

(E) $y = \ln(e^x + 3$

(A)
$$y = -x - \ln 4$$

(B)
$$y = x - \ln 4$$

(C)
$$y = -\ln(-e^x + 5)$$

$$(D) y = -\ln(e^x + 3)$$

(E)
$$y = \ln(e^x + 3)$$

$$\frac{dy}{dx} = e^{y}e^{x}$$

$$-e^{\ln 4} = e^{0} + C$$

 $-4 = 1 + C$

26. Which of the following is an antiderivative of $f(x) = \sqrt{1 + x^3}$?

(A)
$$\frac{2}{3}(1+x^3)^{3/2}$$

(B)
$$\frac{\frac{2}{3}(1+x^3)^{3/2}}{3x^2}$$

(C)
$$\int_0^{1+x^3} \sqrt{t} \ dt$$

(D)
$$\int_0^{x^3} \sqrt{1+t} \ dt$$

$$(E) \int_0^x \sqrt{1+t^3} \ dt$$

$$\frac{d}{dx} \int_{0}^{x} \sqrt{1+t^{3}} dt = \sqrt{1+x^{3}}$$

- 27. For time $t \ge 0$, the height h of an object suspended from a spring is given by $h(t) = 16 + 7\cos\left(\frac{\pi t}{4}\right)$. What is the average height of the object from t = 0 to t = 2?
 - (A) 16

- (B) $\frac{39}{2}$ (C) $16 \frac{14}{\pi}$ (D) $16 + \frac{14}{\pi}$
- (E) $32 + \frac{28}{\pi}$

16

- 1 [16t + 7 4 sin 4t]
- 1 (32 + 28 SINT) (0+28 SIN 0
 - 16+4

- 28. The function f is defined by $f(x) = \sin x + \cos x$ for $0 \le x \le 2\pi$. What is the x-coordinate of the point of inflection where the graph of f changes from concave down to concave up?

 - (A) $\frac{\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{7\pi}{4}$ (E) $\frac{9\pi}{4}$

 f'/χ = COSX - SIN X

 $f''(x) = -\sin x - \cos x$

 $f''(x) = 0 \longrightarrow -\sin x = \cos x$ $-\sin x = \cos x$ $-\sin x = \cos x$ $-\sin x = \cos x$

- SIN \$ - 65 \$

01