

19. The figure above shows the graph of the function g and the line tangent to the graph of g at x = -1. Let h be the function given by $h(x) = e^x \cdot g(x)$. What is the value of h'(-1)?

(A)
$$\frac{9}{e}$$
 (B) $\frac{-3}{e}$ (C) $\frac{-6}{e}$ (D) $\frac{-6}{e} - \frac{3}{e^2}$ (E) -6
(A) $\frac{9}{e}$ (B) $\frac{-3}{e}$ (C) $\frac{-6}{e}$ (D) $\frac{-6}{e} - \frac{3}{e^2}$ (E) -6
(E)

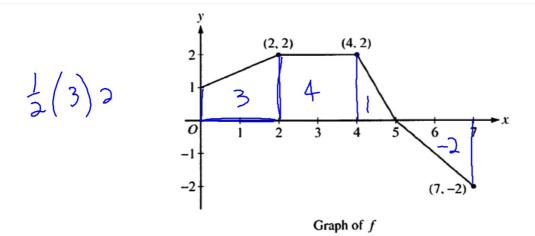
$$\frac{1}{e} \left[-6 + 3 \right]$$

$$-\frac{3}{e}$$

20. For
$$x > 0$$
, $\frac{d}{dx} \left(\int_0^{2x} \ln(t^3 + 1) dt \right) =$

 $2 ln(8x^3+1) - ()(0)$

- (A) $\ln(x^3+1)$
- (B) $\ln(8x^3 + 1)$
- (C) $2\ln(x^3+1)$
- (D) $2\ln(8x^3+1)$
- (E) $24x^2 \ln(8x^3 + 1)$

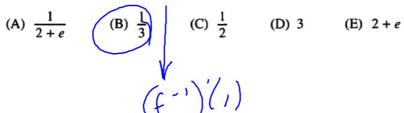


21. The graph of a function f is shown above. What is the value of $\int_0^7 f(x) dx$?

- (A) 6
- (B) 8
- (C) 10
- (D) 14
- (E) 18

- 22. The function f is continuous for all real numbers, and the average rate of change of f on the closed interval [6, 9] is $-\frac{3}{2}$. For 6 < c < 9, there is no value of c such that $f'(c) = -\frac{3}{2}$. Of the following, which must be true?
 - (A) $\frac{1}{3} \int_{6}^{9} f(x) dx = -\frac{3}{2}$
 - (B) $\int_6^9 f(x) dx$ does not exist.
 - (C) $\frac{f'(6) + f'(9)}{2} = -\frac{3}{2}$
 - (D) f'(x) < 0 for all x in the open interval (6, 9).
 - (E) f is not differentiable on the open interval (6, 9).

23. Let f be the function defined by $f(x) = 2x + e^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0,1) is on the graph of f, what is the value of g'(1)?



(f-1)(1)

Since (0,1) on $f \to (f^{-1})'(i) = \frac{1}{f(0)}$ $f'(x) = 2 + e^{x}$

f'(0)=2+e°=3

24. The function g is given by $g(x) = 4x^3 + 3x^2 - 6x + 1$. What is the absolute minimum value of g on the closed interval [-2, 1]?

(A)
$$-7$$
 (B) $-\frac{3}{4}$ (C) 0 (D) 2
 $9'/\chi = 12 \chi^{3} + 6 \chi - 6$

$$g(-2) = -32 + 12 + 12 + 1 = -7$$

 $g(1) = 4 + 3 - 6 + 1 =$

- 25. Which of the following is the solution to the differential equation $\frac{dy}{dx} = e^{y+x}$ with the initial condition $y(0) = -\ln 4$?
 - (A) $y = -x \ln 4$
 - (B) $y = x \ln 4$
 - (C) $y = -\ln(-e^x + 5)$
 - (D) $y = -\ln(e^x + 3)$
 - (E) $y = \ln(e^x + 3)$

$$e^{-y}dy = e^{x}dx$$

$$-e^{-y} = e^{x} - S$$

 $e^{-y} = S - e^{x}$

$$e^{-y}dy = e^{x}dx$$
 $e^{-y} = e^{x} + c$
 $y = -\ln(5 - e^{x})$
 $y = -\ln(5 - e^{x})$

26. Which of the following is an antiderivative of
$$f(x) = \sqrt{1+x^3}$$

(A)
$$\frac{2}{3}(1+x^3)^{3/2}$$

(B)
$$\frac{\frac{2}{3}(1+x^3)^{3/2}}{3x^2}$$

(C)
$$\int_0^{1+x^3} \sqrt{t} \ dt$$

(D)
$$\int_0^{x^3} \sqrt{1+t} \ dt$$

$$(E) \int_0^x \sqrt{1+t^3} \ dt$$

$$\frac{d}{dx} \int_{0}^{x} \sqrt{1+t^{3}} dt = \sqrt{1+x^{3}}$$

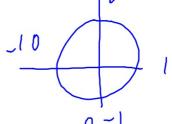
27. For time $t \ge 0$, the height h of an object suspended from a spring is given by $h(t) = 16 + 7\cos\left(\frac{\pi t}{4}\right)$. What is the average height of the object from t = 0 to t = 2?

(A) 16

(B)
$$\frac{39}{2}$$

16 (B)
$$\frac{39}{2}$$
 (C) $16 - \frac{14}{\pi}$ (D) $16 + \frac{14}{\pi}$

$$\frac{1}{2} \int_{0}^{2} \left[\left(16 + 7 \cos \frac{\pi}{4} + 1 \right) dt \right]$$



- 28. The function f is defined by $f(x) = \sin x + \cos x$ for $0 \le x \le 2\pi$. What is the x-coordinate of the point of inflection where the graph of f changes from concave down to concave up?

- $\{ "(x) = \leq 1$ x wsx
- f"(x) = 0 -> SINX = (0) X
 - $X = \frac{3.17}{4} \alpha x = \frac{7.77}{4}$

 $\begin{cases} \frac{\pi}{4} & \text{(B)} \frac{3\pi}{4} & \text{(C)} \frac{5\pi}{4} & \text{(D)} \frac{7\pi}{4} & \text{(E)} \frac{9\pi}{4} & -\text{SMT-WST} \\ \begin{cases} \frac{7}{4} \\ \frac{1}{4} & \text{(D)} \\ \frac{7\pi}{4} & \text{(D)} \frac{7\pi}{4} & \text{(E)} \frac{9\pi}{4} & -\text{SMT-WST} \\ -\text{SIN} \frac{17}{2} - \omega S \frac{77}{2} & -\text{(D)} \\ -\text{(D)} & -\text{(D)} \\ -\text{(D)} & -\text{(D)} \\ -\text{(D)} & -\text{(D)} \\ -\text{(D)} & -\text{(D)} & -\text{(D)} \\ -\text{(D)} &$

