

Graph of f

76. The graph of the function f shown above consists of two line segments and a semicircle. Let g be defined by

 $g(x) = \int_0^x f(t) dt$. What is the value of g(5)?

- (A) 0
- (B) $-1.5 + 2\pi$
- (C) 2π
- (D) $1.5 + 2\pi$
- (E) $4.5 + 2\pi$

77. The volume of a sphere is decreasing at a constant rate of 3 cubic centimeters per second. At the instant when the radius of the sphere is decreasing at a rate of 0.25 centimeter per second, what is the radius of the sphere?

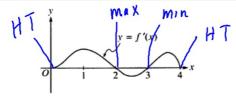
(The volume V of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.)

- (A) 0.141 cm
- (B) 0.244 cm
- (C) 0.250 cm (D) 0.489 cm

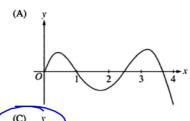
(E) 0.977 cm

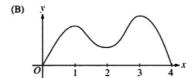
$$\frac{dV}{dt} = -3$$

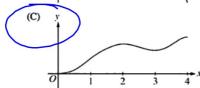
$$V = \frac{4}{3}\pi 1^{3}$$

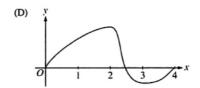

$$-3 = 4\pi r^{2}(-\frac{1}{4})$$

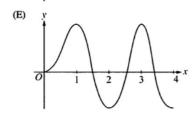
$$\frac{12}{4\pi} = r^2$$


- 78. Let f and g be continuous functions such that $\int_0^{10} f(x) dx = 21$, $\int_0^{10} \frac{1}{2} g(x) dx = 8$, and
 - $\int_{3}^{10} (f(x) g(x)) dx = 2. \text{ What is the value of } \int_{0}^{3} (f(x) g(x)) dx ?$


$$\int_{0}^{16} f = 21$$


$$\int_{\delta}^{\epsilon_0} f - g = 5$$




79. The figure above shows the graph of f', the derivative of the function f. If f(0) = 0, which of the following could be the graph of f?

80. For time $t \ge 0$, the position of a particle traveling along a line is given by a differentiable function s. If s is increasing for $0 \le t < 2$ and s is decreasing for t > 2, which of the following is the total distance the particle travels for $0 \le t \le 5$?

(A)
$$s(0) + \int_0^2 s'(t) dt - \int_2^5 s'(t) dt$$

(B)
$$s(0) + \int_{2}^{5} s'(t) dt - \int_{0}^{2} s'(t) dt$$

(C)
$$\int_2^5 s'(t) dt - \int_0^2 s'(t) dt$$

(D)
$$\left| \int_0^5 s'(t) dt \right|$$

(E)
$$\int_0^5 |s'(t)| dt$$

$$\int_{0}^{s} |v(x)| dx$$

81. A cup of tea is cooling in a room that has a constant temperature of 70 degrees Fahrenheit (°F). If the initial temperature of the tea, at time t = 0 minutes, is 200°F and the temperature of the tea changes at the rate $R(t) = -6.89e^{-0.053t}$ degrees Fahrenheit per minute, what is the temperature, to the nearest degree, of the tea after 4 minutes?

(A) 175°F

(B) 130°F

(C) 95°F

(D) 70°F

(E) 45°F

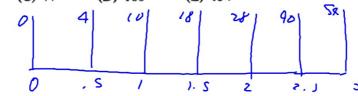
 $200 + \int_{0}^{4} R(4) dt = 175.165$

- 82. The derivative of the function f is given by $f'(x) = x^3 4\sin(x^2) + 1$. On the interval (-2.5, 2.5), at which of the following values of x does f have a relative maximum?
 - (A) -1.970 and 0
 - (B) -1.467 and 1.075
 - (C) -0.475, 0.542, and 1.396
 - (D) -0.475 and 1.396 only
 - (E) 0.542 only

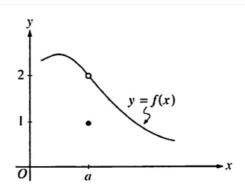
f' above to below

. 542

y = f' $-2.5 \rightarrow 2.5$ 2ero.


х	0	0.5	1	1.5	2	2.5	3
f(x)	0	4	10	18	28	40	54

83. The table above gives selected values for a continuous function f. If f is increasing over the closed interval [0,3], which of the following could be the value of $\int_0^3 f(x)dx$?


(A) 50

(C) 77

 $LS = \frac{1}{2}(0+4+10+18+28+40) = 50$

- 84. The graph of a function f is shown in the figure above. Which of the following statements is true?
 - (A) f(a) = 2
 - (B) f is continuous at x = a.
 - (C) $\lim_{x \to a} f(x) = 1$
 - $(D) \lim_{x \to a} f(x) = 2$
 - (E) $\lim_{x\to a} f(x)$ does not exist.

85. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = \cos \sqrt{t}$. What is the velocity of the particle at the first instance the particle is at the origin?

(A) -1

(E) 0.065

The particle at the first instance the particle is at the origin? y = x + 1 y = x + 1 y = x + 1 y = x + 1 y = x + 1 y = x + 1 y = x + 1 y = x + 1 y = x + 1

86. If f'(x) > 0 for all x and f''(x) < 0 for all x, which of the following could be a table of values for f?

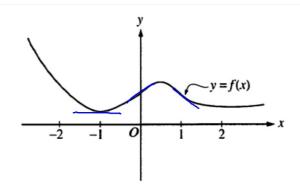
(A)	х	f(x)
	-1	4
	0	3
	1	1

B)	х	f(x)
	-1	4
	0	4
	1	4

)	х	f(x)
	-1	4
	0	5
	1	6

)	х	f(x)
	-1	4
	0	5
	1	7

(E)	х	f(x)
	-1	4
	0	6
	1	7
`		


f 1 CD Values up but by less and less each time

- 87. Let f be the function with first derivative given by $f'(x) = (3 2x x^2)\sin(2x 3)$. How many relative extrema does f have on the open interval -4 < x < 2?
 - (A) Two

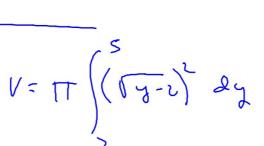
(B) Three (C) Four (D) Five (E) Six)

guph f' on -4 to 2

Count zeros

88. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?

(A)
$$f'(-1) < f'(1) < f'(0)$$

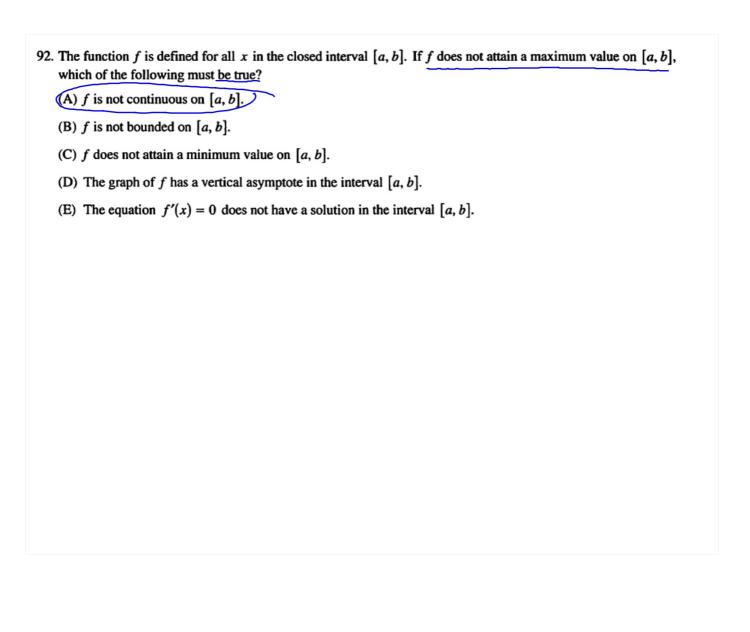

(B)
$$f'(-1) < f'(0) < f'(1)$$

(C)
$$f'(0) < f'(-1) < f'(1)$$

(D)
$$f'(1) < f'(-1) < f'(0)$$

(E)
$$f'(1) < f'(0) < f'(-1)$$

- 89. What is the volume of the solid generated when the region bounded by the graph of $x = \sqrt{y-2}$ and the lines x = 0 and y = 5 is revolved about the y-axis?
 - (A) 3.464
- (B) 4.500
- (C) 7.854
- (D) 10.883
- (E) 14.137



- 90. The population P of a city grows according to the differential equation $\frac{dP}{dt} = kP$, where k is a constant and t is measured in years. If the population of the city doubles every 12 years, what is the value of k?
 - (A) 0.058
- (B) 0.061
- (C) 0.167
- (D) 0.693
- (E) 8.318

$$R = \frac{h^2}{12} = .058$$

- 91. The function f is continuous and $\int_0^8 f(u) du = 6$. What is the value of $\int_1^3 x f(x^2 1) dx$?
 - (A) $\frac{3}{2}$
- (B) 3 (C) 6
- (D) 12

 $U = x^{2} - 1$ $\Delta u = 2 \times \alpha \times$ $\frac{1}{2} du = \times \alpha \times$ $X = 1 \Rightarrow u = 0$ $X = 3 \Rightarrow u = 8$ $\frac{1}{2} (6)$

