(b) For $y \le 11$, find the y-coordinate of each point on the graph where the line tangent to the graph at that point is vertical.

1-55iny=0-9y=.201 ay=6.485 ay=9.223

(c) Find the average value of the x-coordinates of the points on the graph in the first quadrant between y = 5 and y = 9.

$$\chi^{2} = -2 + y + 5 \omega_{5} y$$

$$\chi = \sqrt{-2 + y + 5 \omega_{5} y}$$

$$\frac{1}{9 - 5} = \sqrt{-2 + y + 5 \omega_{5} y} dy = 2.550$$

t (seconds)	0	3	5	8	12
k(t) (feet per second)	0	5	10	20	24

- 3. Kathleen skates on a straight track. She starts from rest at the starting line at time t = 0. For $0 < t \le 12$ seconds, Kathleen's velocity k, measured in feet per second, is differentiable and increasing. Values of k(t) at various times t are given in the table above.
 - (a) Use the data in the table to estimate Kathleen's acceleration at time t = 4 seconds. Show the computations

that lead to your answer. Indicate units of measure.
$$a(4) = h'(4) = \frac{h(5) - h(3)}{5 - 3} = \frac{5}{2}$$

											- 4
t (seconds)	0	3	5	8	12	0	5	10	Jo.		24
k(t) (feet per second)	0	5	10	20	24			2			
						•	•	7	5	l 1	2

(b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate $\int_0^{12} k(t) dt$. Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of $\int_0^{12} k(t) dt$? Explain your reasoning.

$$\int_{0}^{12} h(4) dt \approx 5(3) + 10(2) + 20(3) + 24(4) = 191$$

$$\therefore 191 \text{ feet}$$

This approximation is an averestimate pecula R is more sing on (0,12).

 $5+\int_{0}^{12}n(4)at$

(d) Write an expression for Nathan's acceleration in terms of t.

$$n(t) = 150(t+3)^{-1} - 50e^{-t}$$

$$n'(t) = -150(t+3)^{2}(1) - 50e^{-t}(-1)$$

$$= -\frac{150}{(t+3)^{2}} + 50e^{-t}$$

- 4. Consider the differential equation $\frac{dy}{dx} = \frac{x(y-1)}{4}$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(b) Let y = f(x) be the particular solution to the differential equation with the initial condition f(1) = 3. Write an equation for the line tangent to the graph of f at the point (1, 3) and use it to approximate f(1.4).

$$\frac{dy}{dx}\Big|_{(1,3)} = \frac{1}{2}$$

$$y - 3 = \frac{1}{2}(x - 1)$$

$$y = 3 + \frac{1}{2}(x - 1)$$

$$f(14) \approx y(1.4) = 3 + \frac{1}{2}(14 - 1) = 3.2$$

(c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(1) = 3.

$$\frac{dy}{dx} = \frac{x(y-1)}{4}$$

$$\frac{1}{y-1} dy = \frac{1}{4} \times dx$$

$$\ln |y-1| = \frac{1}{8}x^{2} + C$$

$$y-1 = 0$$

$$y-1 = Ae$$

- 5. Let R be the region in the first quadrant enclosed by the graphs of $g(x) = \sqrt{x}$ and $h(x) = \frac{x}{3}$, as shown in the figure above.
 - (a) Find the area of region R.

$$A = \int_{0}^{9} (\sqrt{x} - \frac{1}{3}x) dx = \left[\frac{2}{3}x^{2} - \frac{1}{6}x^{2}\right]_{0}^{9}$$

$$= (18 - \frac{91}{6}) - (0)$$

$$= \frac{9}{3}$$

(b) Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid generated when R is revolved about the horizontal line y = 4.

$$V = \pi \int_{0}^{9} \left(4 - \frac{1}{3}\right)^{2} - \left(4 - \sqrt{x}\right)^{2} dx$$

(c) Find the maximum vertical distance between the graph of g and the graph of h between x = 0 and x = 16. Justify your answer.

$$D(x) = [x - \frac{1}{3}x]$$

$$D'(x) = \frac{1}{3}[x - \frac{1}{3}] = \frac{3 - 2[x]}{6[x]}$$

$$D'(x) = 0 \longrightarrow 3 - 2[x = 0]$$

$$2[x = \frac{3}{4}]$$

$$D(x) = 0$$

$$0(x) = 0$$

Since Discontinum on [0,1] by EVI main 4

- 6. Let $g(x) = 4(x+1)^{-2/3}$ and let f be the function defined by $f(x) = \int_0^x g(t) dt$ for $x \ge 0$.
- (a) Find f(26). 26 f(26) = 4(x+1) dx $= 4.3(x+1) \begin{cases} 36 \\ 36 \end{cases} (12)$ = (36) (12) = 24

 $g(x) = 4(x+1)^{-2/3}$ and let f be the function defined by $f(x) = \int_0^x g(t) dt$ for $x \ge 0$.

(b) Determine the concavity of the graph of y = f(x) for x > 0 Justify your answer.

$$f'(x) = g(x)
f''(x) = g'(x) = 4(-\frac{2}{3})(x+1) (1)
= -\frac{8}{3\sqrt{(x+1)^{5}}}$$

For X>0, f''(x) <0 :: f 15 concave down for x>0,

$$g(x) = 4(x+1)^{-2/3}$$
 and let f be the function defined by $f(x) = \int_0^x g(t) dt$ for $x \ge 0$.

(c) Let h be the function defined by h(x) = x - f(x). Find the minimum value of h on the interval

$$\begin{array}{lll}
0 \le x \le 26. \\
h'(x) = 1 - f'(x) \\
= 1 - g(x) \\
= 1 - 4(x+1)
\end{array}$$

$$h(2) = 26 - f(26) = 2$$

$$h(7) = 7 - \int f(x+1)^{2} dx$$

$$h(7) = 7 - \int f(x+1)^{2} dx$$

$$= 7 - \left[12^{3} \int_{x+1}^{x+1}\right]^{3} dx$$

$$\begin{cases}
g'(x)dx = g(3) - g(0) \\
= g(3) - 5
\end{cases}$$

$$h(x) = g(x) - \frac{1}{2}x^{2}$$

$$h'(x) = g'(x) - \times$$

$$h'(x) = 0 \longrightarrow g'(x) = X$$

h has a relum main at x=abecause on (0,a) g'(x)>x - h'(x)>0and on (a,z) g'(x)< x - 3h'(x) < 0.