

(c) Find the average value of the x-coordinates of the points on the graph in the first quadrant between y = 5 and y = 9.

$$\chi^{2} = -2 + y + 5\omega y$$

$$\chi = \sqrt{-2 + y + 5\omega y}$$

$$\frac{1}{9 - 5} \sqrt{\sqrt{-2 + y + 5\omega y}} dy = 7.550$$

t (seconds)	0	3	5	8	12
k(t) (feet per second)	0	5	10	20	24

- 3. Kathleen skates on a straight track. She starts from rest at the starting line at time t = 0. For $0 < t \le 12$ seconds, Kathleen's velocity k, measured in feet per second, is differentiable and increasing. Values of k(t) at various times t are given in the table above.
 - (a) Use the data in the table to estimate Kathleen's acceleration at time t = 4 seconds. Show the computations that lead to your answer. Indicate units of measure.

$$a(4) = h'(4) = \frac{k(s) - h(3)}{s - 3} = \frac{10 - s}{2} = \frac{s}{2}$$

t (seconds)	0	3	5	8	12
k(t) (feet per second)	0	5	10	20	24

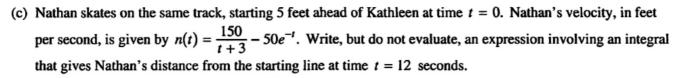
0	5	،	. اه	מכ		24
Č)	ᡝ	چ		<u></u>	ir

(b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate $\int_0^{12} k(t) dt$. Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of $\int_0^{12} k(t) dt$? Explain your reasoning.

$$\int_{0}^{12} h(t) dt \approx (5)3 + (10)(2) + 20(3) + 24(4) = |9|$$

$$= |9| \text{ feet}$$

This is an over estimate because In is increasing on (0,12).



$$5 + \int_{0}^{12} n(4) dt$$

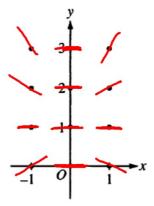
(d) Write an expression for Nathan's acceleration in terms of t.

$$N(t) = 150(t+3)^{-1} - 50e^{-t}$$

$$h'(t) = -150(t+3)^{-1}(1) - 50e^{-t}(-1)$$

$$= -\frac{150}{(t+3)^{2}} + 50e^{-t}$$

- 4. Consider the differential equation $\frac{dy}{dx} = \frac{x(y-1)}{4}$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.



(b) Let y = f(x) be the particular solution to the differential equation with the initial condition f(1) = 3. Write an equation for the line tangent to the graph of f at the point (1,3) and use it to approximate f(1.4).

$$\frac{dy}{dx}\Big|_{(1,3)} = \frac{1}{2}$$

$$y - 3 = \frac{1}{2}(x - 1)$$

$$y = 3 + \frac{1}{2}(x - 1)$$

$$f(1.4) \approx f(1.4) = 3 + \frac{1}{2}(1.4 - 1) = 3.2$$

(c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(1) = 3.

$$\frac{dy}{dx} = \frac{x(y-1)}{4}$$

$$\frac{1}{y-1} dy = \frac{1}{4} \times dx$$

$$\ln|y-1| = \frac{1}{8}x^{2} + C$$

$$y-1=e$$

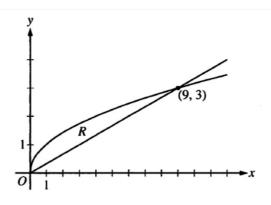
$$y-1=Ae$$

Therential equation with the initial condition
$$3 = 1 + Ae$$

$$\frac{3}{e^{-1/p}} = A = 3e^{-1/8}$$

$$y = 1 + 2e = e$$

$$y = 1 + 2e = e$$

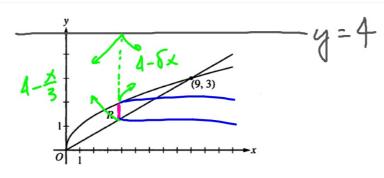


- 5. Let R be the region in the first quadrant enclosed by the graphs of $g(x) = \sqrt{x}$ and $h(x) = \frac{x}{3}$, as shown in the figure above.
 - (a) Find the area of region R.

$$A = \int_{0}^{9} (\sqrt{x} - \frac{1}{8}x) dx = \begin{bmatrix} \frac{2}{3}x^{3/2} - \frac{1}{6}x^{2} \end{bmatrix}_{0}^{9}$$

$$= \begin{bmatrix} \frac{2}{3}\sqrt{x^{3}} - \frac{1}{6}x^{2} \end{bmatrix}_{0}^{9} = (8 - \frac{84}{6}) - 6$$

$$= \frac{9}{3}(\sqrt{x^{3}} - \frac{1}{6}x^{2}) = \frac{9$$



(b) Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid generated when R is revolved about the horizontal line y = 4.

$$V = \Pi \int_{0}^{9} (4 - \frac{1}{3})^{2} - (4 - \sqrt{3})^{2} dx$$

(c) Find the maximum vertical distance between the graph of g and the graph of h between x = 0 and x = 16. Justify your answer.

$$D(x) = \sqrt{x} - \frac{1}{3}x$$

$$D'(x) = \sqrt{3} - \frac{3 - 2\sqrt{x}}{6\sqrt{x}}$$

$$D'(x) = 0 \longrightarrow 3 - 2\sqrt{x} = 0$$

$$2\sqrt{x} = 3$$

$$x = \frac{9}{4}$$

$$D(0) = 0$$

$$D(16) = -\frac{4}{3} (\frac{4}{3})$$

$$D(\frac{9}{4}) = \frac{3}{4}$$

$$D(\frac{9}{4}) = \frac{3}{4}$$

$$D(\frac{1}{3}) = \frac{3}{4}$$

$$D(\frac{9}{4}) = \frac{3}{4}$$

- 6. Let $g(x) = 4(x+1)^{-2/3}$ and let f be the function defined by $f(x) = \int_0^x g(t) dt$ for $x \ge 0$.
- (a) Find f(26). 36 $f(21) = \int 4(x+1) dx$ $= \left[12(x+1)^{3}\right]_{0}^{36}$ $= \left(36\right) \left(12\right)$ = 24

 $g(x) = 4(x+1)^{-2/3}$ and let f be the function defined by $f(x) = \int_0^x g(t) dt$ for $x \ge 0$.

(b) Determine the concavity of the graph of y = f(x) for (x > 0). Justify your answer.

$$f'(x) = g(x)$$

 $f''(x) = g'(x)$
 $= -\frac{2}{3}(x+1)^{-\frac{3}{3}}(1)$
 $= -\frac{8}{3^{\frac{3}{3}}(x+1)^{5}}$
For $x>0$ $f''(x) < 0$... f is concare that $f_{0}(x) > 0$.

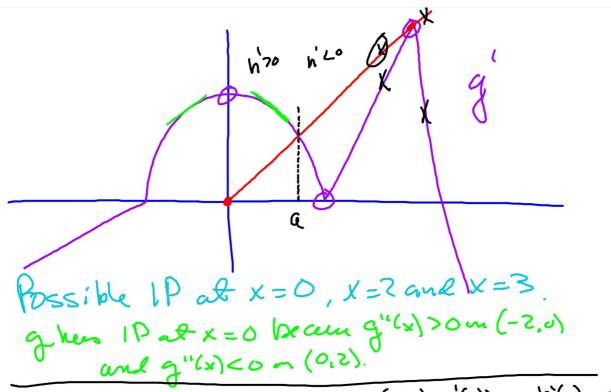
$$g(x) = 4(x+1)^{-2/3}$$
 and let f be the function defined by $f(x) = \int_0^x g(t) dt$ for $x \ge 0$.

(c) Let h be the function defined by h(x) = x - f(x). Find the minimum value of h on the interval $0 \le x \le 26$.

$$h'(x) = (-f'(x))$$

$$= (-g'(x))$$

$$= (-4(x+1))^{2} = (4(x+1))^{2} =$$



Thus relement x=q boan on (0,9) g'(x)>x = h'(x)>0
and on (0,2) g'(x)<x = h'(x)<0.