(b) For y £ 11, find the y-coordinate of each point on the graph where the line tangent to the graph at that point
is vertical.
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(c) Find the average value of the x-coordinates of the points on the graph in the first quadrant between y = 5
and y = 9.




|
(seconds) 0 3 5 8 12

k(z)
0 5 10 20 24
(feet per second)

. Kathleen skates on a straight track. She starts from rest at the starting line at time ¢ = 0. For 0 <t £ 12
seconds, Kathleen’s velocity k, measured in feet per second, is differentiable and increasing. Values of k(r) at

various times ¢ are given in the table above.

(a) Use the data in the table to estimate Kathleen’s acceleration at time ¢ = 4 seconds. Show the computations
that lead to your answer. Indicate units of measure. ’
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(seconds) 0

3

5

8

12

k(1) o
(feet per second)

5

10

20

24
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(b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate

12
-[o k(t) dt. Indicate units of measure. Is this approximation an overestimate or an underestimate for the

12
value of -[o k(z) dt 7 Explain your reasoning.
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(c) Nathan skates on the same track, starting 5 feet ahead of Kathleen at time ¢ = 0. Nathan’s velocity, in feet
per second, is given by n(f) = %i% —50e™". Write, but do not evaluate, an expression involving an integral

that gives Nathan’s distance from the starting line at time ¢ = 12 seconds.
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(d) Write an expression for Nathan’s acceleration in terms of .
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4. Consider the differential equation % = L{‘_l—)-

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
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(b) Let y = f(x) be the particular solution to the differential equation with the initial condition f(1) = 3. Write
an equation for the line tangent to the graph of f at the point (1, 3) and use it to approximate f(1.4).
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(c) Find the particular solution y = f(x) to the given differential equation with the mmal condltlon F@)=3.
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5. Let R be the region in the first quadrant enclosed by the graphs of g(x) = Vx and h(x) = -g-, as shown in the

figure above.
(a) Find the area of regnon R.
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(b) Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid
generated when R is revolved about the horizontal line y = 4.
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(c) Find the maximum vertical distance between the graph of g and the graph of i between x = 0 and
x = 16. Justify your answer.
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6. Let g(x) = 4(x +1)2/> and let f be the function defined by f(x) = j:g(r) dt for x 2 0.

(a) Find f£(26). P



gx)=4(x+ l)'213 and let f be the function defined by f(x) = I:g(t) & Tocr =150,

(b) Determine the concavity of the graph of y = f(x) foustify your answer.
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g(x) = 4(x +1)™/* and let £ be the function defined by f(x) = [ "g(¢) dt for x 2 0.

(c) Let h be the function defined by h(x) = x — f(x). Find the minimum value of A on the interval
0<x<26.
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