1.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4}$$
 is

- (E) nonexistent

$$(A) -\frac{1}{4} \qquad (B) \qquad 0 \qquad (C) \qquad 1$$

$$\frac{2 \quad X + 1}{2 \quad X} \qquad \frac{5}{4}$$

- 2. If $f(x) = x^3 x^2 + x 1$, then f'(2) =

 - (A) 10 (B) 9 (C) 7 (D) 5
- (E) 3

$$f'(x) = 3x^2 - 2x + 1$$

 $f'(2) = 12 - 4 + 1$

$$f'(2) = 12 - 4 + 1$$

- 3. Which of the following definite integrals has the same value as $\int_0^4 xe^{x^2} dx$?
 - $(A) \ \frac{1}{2} \int_0^4 e^u \ du$
 - (B) $\frac{1}{2} \int_{0}^{16} e^{u} du$ (C) $2 \int_{0}^{2} e^{u} du$

 - (D) $2\int_0^4 e^u du$
 - (E) $2\int_0^{16} e^u \ du$

$$u = x^{2}$$
 $du = 2x ax$
 $du = 2x ax$
 $du = x ax$
 du

4. Which of the following is an equation of the line tangent to the graph of
$$(x^2 - 3xy = 10)$$
 at the point $(1, -3)$?

(A)
$$y + 3 = -11(x - 1)$$

(B)
$$y + 3 = -\frac{7}{3}(x - 1)$$

(C)
$$y+3=\frac{1}{3}(x-1)$$

(D)
$$y+3=\frac{7}{3}(x-1)$$

(E)
$$y+3=\frac{11}{3}(x-1)$$

$$2x - 3\left[x\frac{dy}{dx} + y\right] = 0$$

$$2x - 3x \frac{\partial y}{\partial x} - 3y = 0$$

$$\frac{dy}{dx} = \frac{3y - 2x}{-3x}$$

- 5. If g is the function given by $g(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 70x + 5$, on which of the following intervals is g decreasing?
 - (A) $(-\infty, -10)$ and $(7, \infty)$
 - (B) $(-\infty, -7)$ and $(10, \infty)$
 - (C) (-∞, 10)
 - (D) (-10,7)
 - (E) (-7,10)

$$g'(x) = \chi^2 + 3x - 70$$

$$\int_2^4 \frac{dx}{5 - 3x} =$$

(A)
$$-\ln 7$$
 (B) $-\frac{\ln 7}{3}$ (C) $\frac{\ln 7}{3}$ (D) $\ln 7$ (E) $3\ln 7$

$$U = 5 - 3 \times 2$$

 $\frac{2}{-\frac{1}{3}\ln |S-3x|^{2}}$ $\left(-\frac{1}{3}\ln 7\right)-\left(-\frac{1}{3}\ln 1\right)$

7. Let f be the function given by $f(x) = x^3 - 6x^2 + 8x - 2$. What is the instantaneous rate of change of f at x = 3?

(A) -5 (B) $-\frac{15}{4}$ (C) -1 (D) 6 $f'/\chi = 3\chi^2 - 12\chi + 8$ $f'/\vartheta = 27 - 36 + 8$

a = v'

- 8. A particle moves along a straight line. The graph of the particle's velocity v(t) at time t is shown above for $0 \le t \le m$, where j, k, l, and m are constants. The graph intersects the horizontal axis at t = 0, t = k, and t = m and has horizontal tangents at t = j and t = l. For what values of t is the speed of the particle decreasing?
 - (A) $j \le t \le l$

aav

- (B) $k \le t \le m$
- (C) $j \le t \le k$ and $l \le t \le m$
- (D) $0 \le t \le j$ and $k \le t \le l$
- (E) $0 \le t \le j$ and $l \le t \le m$

9. Let f be the function given by $f(x) = \frac{(x-2)^2(x+3)}{(x-2)(x+1)}$. For which of the following values of x is f not continuous?

2 -1

- (A) -3 and -1 only
- (B) −3, −1, and 2
- (C) -1 only
- (D) -1 and 2 only
- (E) 2 only

10. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 - 4$ for time $t \ge 0$. If the particle is at position x = -2 at time t = 0, what is the position of the particle at time t = 3?

(A) 13

- (B) 15
- (C) 16
- (D) 17
- (E) 25

$$-2 + \left[3t^{2} - 4\right] at$$

$$-2 + \left[t^{3} - 4t\right]_{0}^{3}$$

$$-2 + \left[(27 - 12) - (0)\right]$$

$$-2 + 15$$

$$13$$

11. Let f be the function defined by $f(x) = \int_0^x (2t^3 - 15t^2 + 36t) dt$. On which of the following intervals is the graph of y = f(x) concave down?

- (A) $(-\infty, 0)$ only
- (B) $(-\infty, 2)$
- (C) (0, ∞)
- (D) (2, 3) only
- (E) $(3, \infty)$ only

 $\begin{cases} (x) = 2x^{3} - 15x^{2} + 36x \\ 5(x) = 6x^{3} - 30x + 36 \\ x^{2} - 5x + 6 \\ (x - 3)(x - 2) \\ x = 3 \quad x = 3 \end{cases}$

12. For which of the following does $\lim_{x\to\infty} f(x) = 0$?

$$I. (x) = \frac{\ln x}{x^{99}}$$

II.
$$f(x) = \frac{e^x}{\ln x}$$

$$(III.) f(x) = \frac{x^{99}}{e^x}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

N D < grow fister

4999999 <u>X</u> e×