$$10. \qquad \int \left(e^x + e\right) dx =$$

- (A) $e^x + C$ (B) $2e^x + C$ (C) $e^x + e + C$ (D) $e^{x+1} + ex + C$ (E) $e^x + ex + C$

$$e^{x} + ex + c$$

$$\int (e^x + 5)ax$$

$$= e^x + 5x + c$$

- 12. If 0 < c < 1, what is the area of the region enclosed by the graphs of y = 0, $y = \frac{1}{x}$, x = c, and x = 1?
 - (A) $\ln(1-c)$
- (B) $\ln\left(\frac{1}{c}\right)$
- (C) $\ln c$ (D) $\frac{1}{c^2} 1$ (E) $1 \frac{1}{c^2}$

 $\int_{C}^{1} \frac{1}{x} dx = \ln |x|^{2} = \ln |x|^{2} - \ln C$ $= -\ln C = \ln C^{-1} = \ln \frac{1}{C}$

$$13. \qquad \frac{d}{dx} \left(\tan^{-1} x + 2\sqrt{x} \right) =$$

$$(A) -\frac{1}{\sin^2 x} + \frac{1}{\sqrt{x}}$$

(B)
$$\frac{1}{\sqrt{1-x^2}} - 4\sqrt[3]{x}$$

(C)
$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}}$$

(D)
$$\frac{1}{1+x^2}-4\sqrt[3]{x}$$

$$(E) \frac{1}{1+x^2} + \frac{1}{\sqrt{x}}$$

1+x2 + 22[x

- 14. If y = f(x) is a solution to the differential equation $\frac{dy}{dx} = e^{x^2}$ with the initial condition f(0) = 2, which of the following is true?
 - (A) $f(x) = 1 + e^{x^2}$
 - $(B) \quad f(x) = 2xe^{x^2}$
 - (C) $f(x) = \int_{1}^{x} e^{t^2} dt$
 - (D) $f(x) = 2 + \int_0^x e^{t^2} dt$
 - (E) $f(x) = 2 + \int_{2}^{x} e^{t^{2}} dt$

$$\frac{cq}{ax}$$
 $\int_{0}^{x} e^{t^{2}} at = e^{x^{2}}$

$$f(0) = \int_{1}^{0} e^{t^{2}} dt$$

 $f(0) = 2 + \int_{1}^{0} = 2$

- 15. A function f(t) gives the rate of evaporation of water, in liters per hour, from a pond, where t is measured in hours since 12 noon. Which of the following gives the meaning of $\int_{4}^{10} f(t) dt$ in the context described?
 - (A) The total volume of water, in liters, that evaporated from the pond during the first 10 hours after 12 noon
 - (B) The total volume of water, in liters, that evaporated from the pond between 4 P.M. and 10 P.M.
 - (C) The net change in the rate of evaporation, in liters per hour, from the pond between 4 P.M. and 10 P.M.
 - (D) The average rate of evaporation, in liters per hour, from the pond between 4 P.M. and 10 P.M.
 - (E) The average rate of change in the rate of evaporation, in liters per hour per hour, from the pond between 4 P.M. and 10 P.M.

> Total ant of H2O, in L, evap for 4 pm to 10pm

- 16. The first derivative of the function f is given by $f'(x) = 3x^4 12x^3$. What are the x-coordinates of the points of inflection of the graph of f?
 - (A) x = 3 only
 - (B) x = 4 only
 - (C) x = 0 and x = 2
 - (D) x = 0 and x = 3
 - (E) x = 0 and x = 4

$$f''/y = |2x^3 - 36x^2$$

- 17. Let f be the function defined by $f(x) = \frac{1}{x}$. What is the average value of f on the interval [4, 6]?

(A)
$$-\frac{1}{24}$$
 (B) $\frac{5}{24}$ (C) $\frac{1}{2}\ln\frac{3}{2}$ (D) $\ln\frac{3}{2}$ (E) $\frac{1}{2}\ln 2$

$$\frac{1}{2} \int \frac{1}{x} dx = \frac{1}{2} \left[\ln|x|^{2} \right]$$

$$= \frac{1}{2} \left[\ln L - \ln 4 \right]$$

- - = 12 en 3

- 18. The points (3, 0), (x, 0), $\left(x, \frac{1}{x^2}\right)$, and $\left(3, \frac{1}{x^2}\right)$ are the vertices of a rectangle, where $x \ge 3$, as shown in the figure above. For what value of x does the rectangle have a maximum area?
 - (A) 3
 - (B) 4
 - (C) 6
 - (D) 9
 - (E) There is no such value of x.

$$U(x) = \frac{x_4}{x_5 - 5x(x-3)}$$

$$= \frac{x_4}{X_3 - 9x_3 + cx}$$

$$C_{X-X^2-0}$$

$$X(6-x)=0$$

- 19. What are all values of x for which $\int_{x}^{2} t^{3} dt$ is equal to 0?
 - (A) -2 only
- (B) 0 only
- (C) 2 only
- (D) -2 and 2 only
- (E) −2, 0, and 2

20. Let h be the function defined by $h(x) = \int_{\pi/4}^{x} \sin^2 t \ dt$. Which of the following is an equation for the line tangent to the graph of h at the point where $x = \frac{\pi}{4}$?

([2]) = 2 4

(A)
$$y = \frac{1}{2}$$

(B)
$$y = \sqrt{2}x$$

(C)
$$y = x - \frac{\pi}{4}$$

(D)
$$y = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$$

$$(E) \quad y = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)$$

(B)
$$y = \sqrt{2}x$$

(C) $y = x - \frac{\pi}{4}$
(D) $y = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$
(D) $y = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$
(E) $y = \sqrt{2}x$
(D) $y = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$
(E) $y = \sqrt{2}x$
(D) $y = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$
(E) $y = \sqrt{2}x$

$$y = O + \frac{1}{2} \left(x - \frac{\pi}{4} \right)$$

$$MV^{T}$$
 $f'(c) = \frac{f(b)-f(a)}{b-a}$
 $= 8$

х	f(x)
-1	-30
0	-2
3	10
5	18

- 21. The table above gives selected values for a twice-differentiable function f. Which of the following must be true?
 - (A) f has no critical points in the interval -1 < x < 5.
 - (B) f'(x) = 8 for some value of x in the interval -1 < x < 5
 - (C) f'(x) > 0 for all values of x in the interval -1 < x < 5.
 - (D) f''(x) < 0 for all values of x in the interval -1 < x < 5.
 - (E) The graph of f has no points of inflection in the interval -1 < x < 5.

$$\frac{f(s)-f(-1)}{s--1}=\frac{18--30}{6}=8$$

22. A particle moves along the x-axis so that at time $t \ge 0$, the acceleration of the particle is $a(t) = 15\sqrt{t}$. The position of the particle is 10 when t = 0, and the position of the particle is 20 when t = 1. What is the velocity of the particle at time t = 0?

(A) -14

(B) 0

(C) 5

(D) 6

(E) 10

 $15 = 4t^{3/2}$ $10 = 4t^{5/2}$

$$10 = 0 + 0 + 0$$

$$0 = 10$$

$$5(t) = 4t^{3/2} + Ct + 10$$

$$20 = 4 + C + 10$$

$$6 = C$$

$$(0) = 6$$