$$10. \qquad \int \left(e^x + e\right) dx =$$

- (A) $e^x + C$ (B) $2e^x + C$ (C) $e^x + e + C$ (D) $e^{x+1} + ex + C$ (E) $e^x + ex + C$

$$e^{x} + ex + c$$

$$\int e^{x} + S \int_{ax}^{ax}$$

$$= e^{x} + Sx$$

Graph of f

11. The graph of the function f is shown in the figure above. Which of the following could be the graph of f', the derivative of f?

(A)

(E)

(C)

- 12. If 0 < c < 1, what is the area of the region enclosed by the graphs of y = 0, $y = \frac{1}{x}$, x = c, and x = 1?
 - (A) $\ln(1-c)$
- (B) $\ln\left(\frac{1}{c}\right)$
- (C) $\ln c$
- (D) $\frac{1}{c^2} 1$ (E) $1 \frac{1}{c^2}$

$$\int_{C} \frac{1}{x} dx = \ln|x|_{C} = \ln 1 - \ln C$$

13.
$$\frac{d}{dx}\left(\tan^{-1}x + 2\sqrt{x}\right) =$$

$$(A) -\frac{1}{\sin^2 x} + \frac{1}{\sqrt{x}}$$

(B)
$$\frac{1}{\sqrt{1-x^2}} - 4\sqrt[3]{x}$$

(C)
$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}}$$

(D)
$$\frac{1}{1+x^2} - 4\sqrt[3]{x}$$

$$(E) \frac{1}{1+x^2} + \frac{1}{\sqrt{x}}$$

- (A) $f(x) = 1 + e^{x^2}$
- $(B) \quad f(x) = 2xe^{x^2}$
- (C) $f(x) = \int_1^x e^{t^2} dt \quad \checkmark$
- (D) $f(x) = 2 + \int_0^x e^{t^2} dt$
 - (E) $f(x) = 2 + \int_2^x e^{t^2} dt$

- $f(0) = \int_{3}^{6} e^{2} dt$

- 15. A function f(t) gives the rate of evaporation of water, in liters per hour, from a pond, where t is measured in hours since 12 noon. Which of the following gives the meaning of $\int_{4}^{10} f(t) dt$ in the context described?
 - (A) The total volume of water, in liters, that evaporated from the pond during the first 10 hours after 12 noon
 - (B) The total volume of water, in liters, that evaporated from the pond between 4 P.M. and 10 P.M.
 - (C) The net change in the rate of evaporation, in liters per hour, from the pond between 4 P.M. and 10 P.M.
 - (D) The average rate of evaporation, in liters per hour, from the pond between 4 P.M. and 10 P.M.
 - (E) The average rate of change in the rate of evaporation, in liters per hour per hour, from the pond between 4 P.M. and 10 P.M.

Total ant of H20 in L evap from 4 pm to 10 pm 16. The first derivative of the function f is given by $f'(x) = 3x^4 - 12x^3$. What are the x-coordinates of the points of inflection of the graph of f?

(A)
$$x = 3$$
 only

(B)
$$x = 4$$
 only

(C)
$$x = 0$$
 and $x = 2$

(D)
$$x = 0$$
 and $x = 3$

(E)
$$x = 0$$
 and $x = 4$

$$f''(x) = |2x^3 - 36x^2$$

$$|\lambda x^2(x-3)$$

- 17. Let f be the function defined by $f(x) = \frac{1}{x}$. What is the average value of f on the interval [4, 6]?

$$\frac{1}{2}\left(\frac{1}{x}ax\right)$$

(A)
$$-\frac{1}{24}$$
 (B) $\frac{5}{24}$ (C) $\frac{1}{2}\ln\frac{3}{2}$ (D) $\ln\frac{3}{2}$ (E) $\frac{1}{2}\ln 2$

$$\frac{1}{2} \int \frac{1}{x} dx = \frac{1}{2} \left[\ln|x|^{4} \right]$$

$$= \frac{1}{2} \left[\ln b - \ln 4 \right]$$

$$= \frac{1}{2} \ln\frac{3}{2}$$

- 18. The points (3, 0), (x, 0), $\left(x, \frac{1}{x^2}\right)$, and $\left(3, \frac{1}{x^2}\right)$ are the vertices of a rectangle, where $x \ge 3$, as shown in the figure above. For what value of x does the rectangle have a maximum area?
 - (A) 3
- (B) 4
 - (D) 9
 - (E) There is no such value of x.

$$A'(x) = \frac{x^2 - (x-3)(9x)}{x^4}$$

$$(6x - x^2 = 0)$$

 $(6x - x^2 = 0)$

- (A) -2 only
- (B) 0 only
- (C) 2 only
- (D) -2 and 2 only
- (E) −2, 0, and 2

20. Let h be the function defined by $h(x) = \int_{\pi/4}^{x} \sin^2 t \, dt$. Which of the following is an equation for the line tangent to the graph of h at the point where $x = \frac{\pi}{4}$?

(A)
$$y = \frac{1}{2}$$

(B)
$$y = \sqrt{2}x$$

$$(C) \quad y = x - \frac{\pi}{4}$$

$$(D) \quad y = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$$

$$(E) \quad y = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)$$

(C)
$$y = x - \frac{\pi}{4}$$

(D) $y = \frac{1}{2}\left(x - \frac{\pi}{4}\right)$
(E) $y = \frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right)$
(E) $y = \frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right)$

$$y = 0 + \frac{1}{2} \left(x - \frac{\tau t}{4} \right)$$

f'/6)=	f(b)-f(a)
	b-a

х	f(x)
-1	-30
0	2
3	10
5	18

- 21. The table above gives selected values for a wice-differentiable function f. Which of the following must be true?
 - (A) f has no critical points in the interval -1 < x < 5.
 - (B) f'(x) = 8 for some value of x in the interval -1 < x < 5.
 - (C) f'(x) > 0 for all values of x in the interval -1 < x < 5.
 - (D) f''(x) < 0 for all values of x in the interval -1 < x < 5.
 - (E) The graph of f has no points of inflection in the interval -1 < x < 5.

$$\frac{\zeta(s)-\zeta(-1)}{s--1}=\frac{18--30}{6}=8$$

22. A particle moves along the x-axis so that at time $t \ge 0$, the acceleration of the particle is $a(t) = 15\sqrt{t}$. The position of the particle is 10 when t = 0, and the position of the particle is 20 when t = 1). What is the velocity of the particle at time t = 0?

(A) -14

(B) 0

(C) 5

(E) 10

V(+)=10+3/2+C

10 = D

5(t)= 4t + Ct + 10 20 = 4 + C + 10 $V(t) = 10t^{3/2} + Ct + D$ $V(t) = 10t^{3/2} + 6$