1.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4}$$
 is

- (E) nonexistent

$$\frac{\lim_{x \to 2} \frac{1}{x^2 - 4}}{(A)^2 - \frac{1}{4}} = \frac{1}{(B)} = 0 \qquad (C) \qquad 1$$

$$\frac{2 \times 1}{2 \times 4} = \frac{5}{4}$$

- 2. If $f(x) = x^3 x^2 + x 1$, then f'(2) =

 - (A) 10 (B) 9 (C) 7 (D) 5
- (E) 3

$$f'(x) = 3x^2 - 2x + 1$$

- 3. Which of the following definite integrals has the same value as $\int_0^4 xe^{x^2} dx$?
 - $(A) \ \frac{1}{2} \int_0^4 e^u \ du$
 - $(B) \frac{1}{2} \int_0^{16} e^u \ du$
 - (C) $2\int_0^2 e^u du$
 - (D) $2\int_0^4 e^u du$
 - (E) $2\int_0^{16} e^u \ du$

$$U = x^{2}$$

$$du = 2x ax$$

$$\frac{1}{2} du = x ax$$

$$x = 0 \quad u = 0$$

$$x = 4 \quad u = 16$$

$$\frac{1}{2} \int_{0}^{4} du$$

4. Which of the following is an equation of the line tangent to the graph o $(x^2 - 3xy = 10)$ at the point (1, -3)?

(A)
$$y + 3 = -11(x - 1)$$

(B)
$$y + 3 = -\frac{7}{3}(x - 1)$$

(C)
$$y+3=\frac{1}{3}(x-1)$$

(D)
$$y + 3 = \frac{7}{3}(x - 1)$$

$$(E) y + 3 = \frac{11}{3}(x-1)$$

$$y+3=\frac{11}{3}(x-1)$$

$$2x - 3\left[x \frac{dy}{dx} + y \right] = 0$$

$$\frac{dy}{dx} = \frac{3y - 2x}{-3x}$$

$$=\frac{2x-3y}{3x}$$

(A)
$$(-\infty, -10)$$
 and $(7, \infty)$

(B)
$$(-\infty, -7)$$
 and $(10, \infty)$

$$g'(x) = x^2 + 3x - 70$$

 $(x + 10 \times x - 7)$
 $x = -10 \times = 7$

-10

$$\int_2^4 \frac{dx}{5 - 3x} =$$

- (A) $-\ln 7$ (B) $-\frac{\ln 7}{3}$ (C) $\frac{\ln 7}{3}$ (D) $\ln 7$ (E) $3 \ln 7$

$$-\frac{1}{3}\ln|s-3x|^{4}$$

 $\left(-\frac{1}{3} \ln 7\right) - \left(-\frac{1}{3} \ln 1\right)$

7. Let f be the function given by $f(x) = x^3 - 6x^2 + 8x - 2$. What is the instantaneous rate of change of f at x = 3?

(A) -5 (B) $-\frac{15}{4}$ (C) -1

(E) 17

- 8. A particle moves along a straight line. The graph of the particle's velocity v(t) at time t is shown above for $0 \le t \le m$, where j, k, l, and m are constants. The graph intersects the horizontal axis at t = 0, t = k, and t = m and has horizontal tangents at t = j and t = l. For what values of t is the speed of the particle a & V to have diff. signs. decreasing?
 - (A) $j \le t \le l$
 - (B) $k \le t \le m$
 - (C) $j \le t \le k$ and $l \le t \le m$
 - (D) $0 \le t \le j$ and $k \le t \le l$
 - (E) $0 \le t \le j$ and $l \le t \le m$

- 9. Let f be the function given by $f(x) = \frac{(x-2)^2(x+3)}{(x-2)(x+1)}$. For which of the following values of x is f not continuous?
 - (A) -3 and -1 only
 - (B) −3, −1, and 2
 - (C) -1 only
 - (D) -1 and 2 only
 - (E) 2 only

- 10. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 4$ for time $t \ge 0$. If the particle is at position x = -2 at time t = 0, what is the position of the particle at time t = 3?
 - (A) 13
- (B) 15
- (C) 16
- (D) 17
- (E) 25

$$-2 + \left[\frac{3}{3} + \frac{2}{4} \right] = 4 + \left[\frac{3}{4} + \frac{3}{4} + \frac{3}{4} \right] = 4 + \left[\frac{3}{4} + \frac{3}{4} + \frac{3}{4} \right] = 4 + \left[\frac{3}{4} + \frac{3}{4} + \frac{3}{4} \right] = 4 + \left[\frac{3}{4} + \frac{3}{4$$

- 11. Let f be the function defined by $f(x) = \int_0^x (2t^3 15t^2 + 36t) dt$. On which of the following intervals is the graph of y = f(x) concave down?
 - (A) $(-\infty, 0)$ only
 - (B) (-∞, 2)
 - (C) (0, ∞)
 - (D) (2, 3) only
 - (E) $(3, \infty)$ only

$$f'(x) = 2x^3 - 15x^2 + 36x$$

$$(x^2 - 5x + 6)$$

 $(x - 2)(x - 3)$
 $x = 2$ $x = 3$

12. For which of the following does $\lim_{x\to\infty} f(x) = 0$?

$$I. f(x) = \frac{\ln x}{x^{99}}$$

II.
$$f(x) = \frac{e^x}{\ln x}$$

$$(III) f(x) = \frac{x^{99}}{e^x}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

 $\frac{N}{D}$ = grow faster

9999999 X

O X