1. If  $y = \cos 2x$ , then  $\frac{dy}{dx} =$ (A)  $-2\sin 2x$ (B)  $-\sin 2x$ (C)  $\sin 2x$ (D)  $2\sin 2x$ (E)  $2\sin x$ 

-2 SIN2 x



(A) 
$$\frac{x^3}{3} \left( \frac{x^4}{4} - x \right)^{10} + C$$

(B) 
$$\frac{\left(x^3-1\right)^{11}}{11}+C$$

(C) 
$$\frac{x^2(x^3-1)^{11}}{11} + C$$

(D) 
$$\frac{(x^3-1)^{11}}{33}+C$$

(E) 
$$\frac{x^3(x^3-1)^{11}}{33}+C$$

$$u = x^3 - 1$$

$$M=3x^2ax$$

$$\frac{1}{3}$$
 du =  $x^2 ax$ 

$$\frac{1}{3}\int u'' du = \frac{1}{3} \frac{1}{11} (x^2 i)'' + C$$

- 3.  $\lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3}$  is

  (A)  $\frac{1}{3}$  (B)  $\frac{3}{4}$  (C)  $\frac{3}{2}$  (D)  $\frac{9}{4}$  (E) infinite

4. If 
$$y = \left(\frac{x}{x+1}\right)^5$$
, then  $\frac{dy}{dx} =$ 

(A) 
$$5(1+x)^4$$

$$(B) \ \frac{x^4}{(x+1)^4}$$

(C) 
$$\frac{5x^4}{(x+1)^4}$$

(A) 
$$5(1+x)^4$$
 (B)  $\frac{x^4}{(x+1)^4}$  (C)  $\frac{5x^4}{(x+1)^4}$  (D)  $\frac{5x^4}{(x+1)^6}$  (E)  $\frac{5x^4(2x+1)}{(x+1)^6}$ 

(E) 
$$\frac{5x^4(2x+1)}{(x+1)^6}$$

$$\frac{dy}{dx} = 5\left(\frac{x}{x+1}\right)^4 \left[\frac{(x+1)-x}{(x+1)^2}\right]$$

$$= 5\left(\frac{x}{x+1}\right)^4 \left[\frac{1}{(x+1)^2}\right]$$

$$= \frac{5x^4}{(x+1)^6}$$

| t<br>(minutes)            | 0 | 4 | 7 | 9 |
|---------------------------|---|---|---|---|
| r(t) (gallons per minute) | 9 | 6 | 4 | 3 |

5. Water is flowing into a tank at the rate r(t), where r(t) is measured in gallons per minute and t is measured in minutes. The tank contains 15 gallons of water at time t = 0. Values of r(t) for selected values of t are given in the table above. Using a trapezoidal sum with the three intervals indicated by the table, what is the approximation of the number of gallons of water in the tank at time t = 9?

(A) 52

(E) 79



- 6. The slope of the line tangent to the graph of  $y = \ln(1-x)$  at x = -1 is

- **(E)** 1

(A) 
$$-1$$
 (B)  $-\frac{1}{2}$  (C)  $\frac{1}{2}$  (D)  $\ln 2$ 

$$\frac{dy}{dy} = \frac{-1}{|-x|}$$

$$\frac{dy}{dx}\Big|_{x=1} = \frac{-1}{1--1} = \frac{-1}{2}$$



- (A)  $f(x) = x^2 + 2x$  and  $g(x) = x^2 + \ln x$
- (B)  $f(x) = 3x^3$  and  $g(x) = x^4$
- (C)  $f(x) = 3^x$  and  $g(x) = x^3$
- (D)  $f(x) = 3e^x + x^3$  and  $g(x) = 2e^x + x^2$
- (E)  $f(x) = \ln(3x)$  and  $g(x) = \ln(2x)$









$$\frac{3^{x}}{x^{3}}$$





(A) 
$$-2$$
 (B)  $-\frac{2}{15}$  (C) 1

$$du = 2 \times a \times$$

$$\frac{1}{2} du = x dx$$

$$\frac{1}{2} \int_{0}^{25} u' du = \left[ \frac{1}{2} z u'^{2} \right]_{q}^{25}$$

$$= 5 - 3$$



- (A)  $[0, \infty)$  only (B)  $(-\infty, 0]$  only

  - (C)  $\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$  only
  - (D)  $(-\infty, \infty)$
  - (E) There is no such interval.

$$-2x < 0$$
  
 $x > 0$ 

f'/x) 20