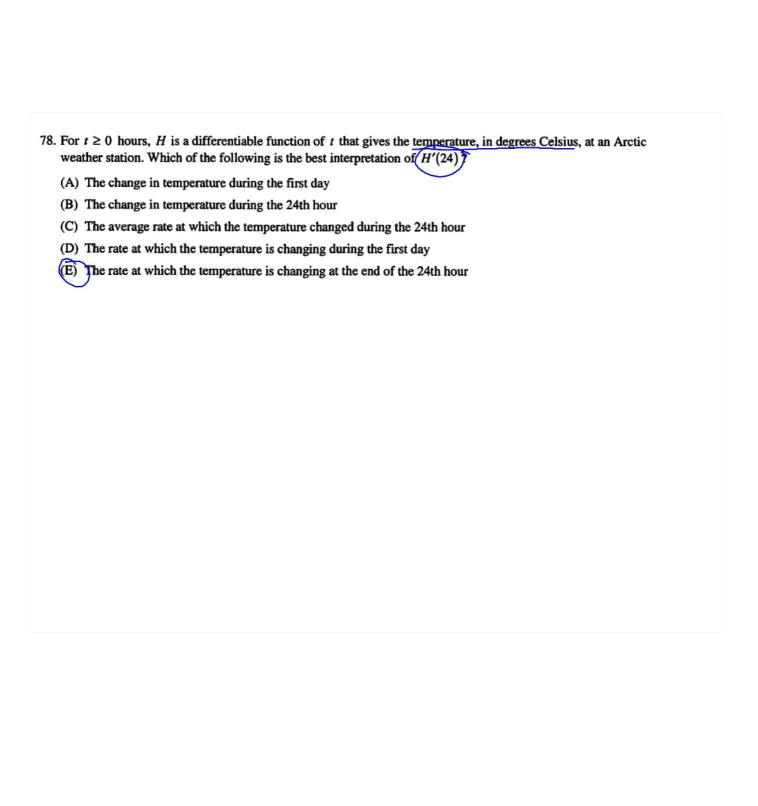
- 76. A particle moves along the x-axis so that at any time $t \ge 0$ its velocity is given by $v(t) = t^2 \ln(t+2)$. What is the acceleration of the particle at time t = 6?
 - (A) 1.500
- (B) 20.453
- (C) 29.453
- (D) 74.860
- (E) 133.417

$$y = V(t)$$

 $y^2 = a(y((x), x))$
 $y^2(6)$


- 77. If $\int_0^3 f(x) dx = 6$ and $\int_3^5 f(x) dx = 4$, then $\int_0^5 (3 + 2f(x)) dx = 6$ (A) 10 (B) 20 (C) 23 (D) 35

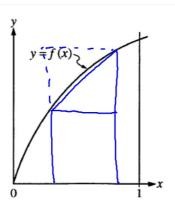
- (E) 50

$$\int_{0}^{5} 3 dx + 2 \int_{0}^{5} f(x) dx$$

$$3(5-0) + 2(10)$$

79. A spherical tank contains 81.637 gallons of water at time t = 0 minutes. For the next 6 minutes, water flows out of the tank at the rate of $9\sin(\sqrt{t+1})$ gallons per minute. How many gallons of water are in the tank at the end of the 6 minutes?

(A) 36.606


(B) 45.031

(C) 68.858

(D) 77.355

(E) 126.668

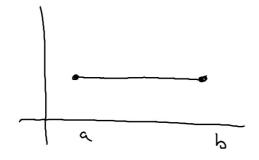
 $81.637 - \int_{0}^{6} 9 \sin \sqrt{t+1} dt = 36.606$

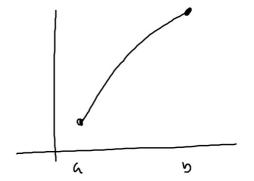
Rieman overlunder iner. or dear. Trap our lunde con up c dunn

- 80. A left Riemann sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of $\int_0^1 f(x) dx$, each using the same number of subintervals. The graph of the function f is shown in the figure above. Which of the sums give an underestimate of the value of $\int_0^1 f(x) dx$?
 - I. Left sum 🗸
 - II. Right sum OVC
 - III. Trapezoidal sum 🗸
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and III only
 - (E) II and III only

81. The first derivative of the function f is given by $f'(x) = x - 4e^{-\sin(2x)}$. How many points of inflection does the graph of f have on the interval $0 < x < 2\pi$?

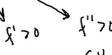
(A) Three

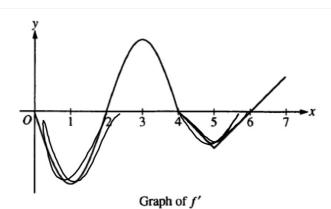

- (B) Four
- (C) Five
- (D) Six
- (E) Seven


grouph f' on 0 to 277 count # rel. ext.

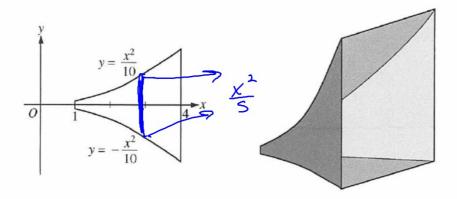
- 82. If f is a continuous function on the closed interval [a, b], which of the following must be true?
 - There is a number c in the open interval (a, b) such that f(c) = 0.
 - There is a number c in the open interval (a, b) such that f(a) < f(c) < f(b).
 - There is a number c in the closed interval [a, b] such that $\underbrace{f(c) \ge f(x)}$ for all x in [a, b].

 (D) There is a number c in the open interval (a, b) such that $\underbrace{f'(c) \ge 0}$.


 - (E) There is a number c in the open interval (a, b) such that $\underline{f'(c)} = \frac{f(b) f(a)}{b a}$.


x	2.5	2.8	3.0	3.1	
f(x)	31.25	39.20	45	48.05	

- 83. The function f is differentiable and has values as shown in the table above. Both f and f' are strictly increasing on the interval $0 \le x \le 5$. Which of the following could be the value of f'(3)?
 - (A) 20
- (B) 27.5
- (C) 29
- (E) 30.5



$$\frac{45 - 39.2}{3 - 2.8} = 29$$

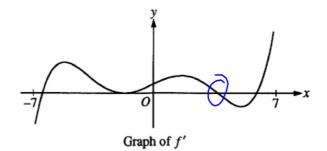
$$\frac{48.05 - 45}{3.1 - 3} = 30.5$$

84. The graph of f', the derivative of the function f, is shown above. On which of the following intervals is f decreasing?

- 85. The base of a loudspeaker is determined by the two curves $y = \frac{x^2}{10}$ and $y = -\frac{x^2}{10}$ for $1 \le x \le 4$, as shown in the figure above. For this loudspeaker, the cross sections perpendicular to the x-axis are squares. What is the volume of the loudspeaker, in cubic units?

- (E) 25.711

The rights above. For this foldspeaker, the cross sections perpendicular volume of the loudspeaker, in cubic units?


(B)
$$4.092$$
 (C) 4.200 (D) 8.184

(C) 4.200 (D) 4.184

x	3	4	5	6	7			
f(x)	20	17	12	16 _	_ 20			
	C.	, ,	-1,	11-	C(> 0			

86. The function f is continuous and differentiable on the closed interval [3, 7]. The table above gives selected values of f on this interval. Which of the following statements must be true?

- I. The minimum value of f on [3, 7] is 12.
- II. There exists c, for 3 < c < 7, such that f'(c) = 0.
- III. f'(x) > 0 for 5 < x < 7.
- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) I, II, and III

87. The figure above shows the graph of f', the derivative of the function f, on the open interval -7 < x < 7. If f' has four zeros on -7 < x < 7, how many relative maxima does f have on -7 < x < 7?

- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

- 88. The rate at which water is sprayed on a field of vegetables is given by $R(t) = 2\sqrt{1 + 5t^3}$, where t is in minutes and R(t) is in gallons per minute. During the time interval $0 \le t \le 4$, what is the average rate of water flow, in gallons per minute?
 - (A) 8.458
- (B) 13.395

- (E) 35.833

(C) 14.691 (D) 18.916 (E) 35.1

$$\frac{1}{4-0}$$
 | P(1) at = 14.691

х	f(x)	f'(x)	g(x)	g'(x)
1	3	-2	-3	4

89. The table above gives values of the differentiable functions f and g and their derivatives at x = 1. If

The table above gives values of the differentiable function
$$h(x) = (2f(x) + 3)(1 + g(x))$$
, then $h'(1) =$
(A) -28 (B) -16 (C) 40 (D) 44

$$h'(x) = [2+(x)+3][g'(x)] + [1+g(x)][2+(x)]$$

 $h'(x) = [2+(x)+3][g'(x)] + [1+g(x)][2+(x)]$ = 44

90. The functions f and g are differentiable. For all x, f(g(x)) = x and g(f(x)) = x. If f(3) = 8 and f'(3) = 9, what are the values of g(8) and g'(8)?

(A)
$$g(8) = \frac{1}{3}$$
 and $g'(8) = -\frac{1}{9}$

(B)
$$g(8) = \frac{1}{3}$$
 and $g'(8) = \frac{1}{9}$

(C)
$$g(8) = 3$$
 and $g'(8) = -9$

(D)
$$g(8) = 3$$
 and $g'(8) = -\frac{1}{9}$
(E) $g(8) = 3$ and $g'(8) = \frac{1}{9}$

(E)
$$g(8) = 3$$
 and $g'(8) = \frac{1}{9}$

$$\mathfrak{J}'(8) = \frac{1}{5}$$

$$= \frac{1}{9}$$

- 91. A particle moves along the x-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = 5te^{-t} 1$. At t = 0, the particle is at position x = 1. What is the total distance traveled by the particle from t = 0 to t = 4?
 - (A) 0.366
- (B) 0.542

- (E) 2.821

ition x = 1. What is the total distance of the property of

- 92. Let f be the function with first derivative defined by $f'(x) = \sin(x^3)$ for $0 \le x \le 2$. At what value of x does f attain its maximum value on the closed interval $0 \le x \le 2$?
 - (A) 0

(B) 1.162 (C) 1.465 (D) 1.845 (E) 2

graph f' above to he low.