$$10. \qquad \int \left(e^x + e\right) dx =$$

- (A) $e^x + C$ (B) $2e^x + C$ (C) $e^x + e + C$ (D) $e^{x+1} + ex + C$ (E) $e^x + ex + C$

$$\int (e^x + 3) dx$$

$$= e^x + 3x + 0$$

Graph of f

11. The graph of the function f is shown in the figure above. Which of the following could be the graph of f', the derivative of f?

(A)

(D)

(E)

12. If 0 < c < 1, what is the area of the region enclosed by the graphs of y = 0, $y = \frac{1}{x}$, x = c, and x = 1?

- (A) $\ln(1-c)$
- (B) $\ln\left(\frac{1}{c}\right)$

- (C) $\ln c$ (D) $\frac{1}{c^2} 1$ (E) $1 \frac{1}{c^2}$

 $\int_{C}^{1} \frac{1}{x} dx = \ln |x|^{2}$ $= \ln 1 - \ln c$ $= -\ln c = \ln c^{2} = \ln c$

$$13. \qquad \frac{d}{dx} \left(\tan^{-1} x + 2\sqrt{x} \right) =$$

$$(A) -\frac{1}{\sin^2 x} + \frac{1}{\sqrt{x}}$$

(B)
$$\frac{1}{\sqrt{1-x^2}} - 4\sqrt[3]{x}$$

(C)
$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}}$$

(D)
$$\frac{1}{1+x^2}-4\sqrt[3]{x}$$

$$(E) \frac{1}{1+x^2} + \frac{1}{\sqrt{x}}$$

14. If
$$y = f(x)$$
 is a solution to the differential equation $\frac{dy}{dx} = e^{x^2}$ with the initial condition $f(0) = 2$, which of the following is true?

(A)
$$f(x) = 1 + e^{x^2}$$

$$(B) \quad f(x) = 2xe^{x^2}$$

(C)
$$f(x) = \int_{1}^{x} e^{t^2} dt$$

(D)
$$f(x) = 2 + \int_0^x e^{t^2} dt$$

(E)
$$f(x) = 2 + \int_2^x e^{t^2} dt$$

$$dy = e^{x^2} ax$$

$$\frac{d}{dx} \int_{1}^{x} e^{x^{2}} dt = e^{x^{2}}$$

- 15. A function f(t) gives the rate of evaporation of water, in liters per hour, from a pond, where t is measured in hours since 12 noon. Which of the following gives the meaning of $\int_{4}^{10} f(t) dt$ in the context described?
 - (A) The total volume of water, in liters, that evaporated from the pond during the first 10 hours after 12 noon
 - ((B)) The total volume of water, in liters, that evaporated from the pond between 4 P.M. and 10 P.M.
 - The net change in the rate of evaporation, in liters per hour, from the pond between 4 P.M. and 10 P.M.
 - The average rate of evaporation, in liters per hour, from the pond between 4 P.M. and 10 P.M.
 - The average rate of change in the rate of evaporation, in liters per hour per hour, from the pond between 4 P.M. and 10 P.M.

total H2O evap from 4 pm to 10 pm

- 16. The first derivative of the function f is given by $f'(x) = 3x^4 12x^3$. What are the x-coordinates of the points of inflection of the graph of f?
 - (A) x = 3 only
 - (B) x = 4 only
 - (C) x = 0 and x = 2
 - (D) x = 0 and x = 3
 - (E) x = 0 and x = 4

$$f''/x = 12 x^{3} - 36 x^{2}$$
$$f''/x = 12 x^{2} (x - 3)$$

$$x = 0$$
 $x = 3$

- 17. Let f be the function defined by $f(x) = \frac{1}{x}$. What is the average value of f on the interval [4, 6]?
 - (A) $-\frac{1}{24}$
- (B) $\frac{5}{24}$
- (C) $\frac{1}{2} \ln \frac{3}{2}$
- (D) $\ln \frac{3}{2}$
- (E) $\frac{1}{2} \ln 2$

$$\frac{1}{6-4} \left(\frac{1}{x} ax = \frac{1}{2} \left(\frac{\ln |x|}{4} \right) \right)$$

$$= \frac{1}{2} \left[\frac{\ln (x - \ln x)}{2} \right]$$

$$= \frac{1}{2} \left[\frac{\ln (x - \ln x)}{2} \right]$$

- 18. The points (3, 0), (x, 0), $\left(x, \frac{1}{x^2}\right)$, and $\left(3, \frac{1}{x^2}\right)$ are the vertices of a rectangle, where $x \ge 3$, as shown in the figure above. For what value of x does the rectangle have a maximum area?
 - (A) 3
 - (B) 4
 - (C) 6
 - (D) 9
 - (E) There is no such value of x.

$$(\frac{1}{4})^{2} = \frac{x^{2} - (x - 3)(2x)}{x^{4}}$$

- 19. What are all values of x for which $\int_{x}^{2} t^{3} dt$ is equal to 0?
 - (A) -2 only (B) 0 only
- (C) 2 only
- (D) -2 and 2 only (E) -2, 0, and 2

20. Let h be the function defined by $h(x) = \int_{\pi/4}^{x} \sin^2 t \, dt$. Which of the following is an equation for the line tangent to the graph of h at the point where $x = \frac{\pi}{4}$?

(A)
$$y = \frac{1}{2}$$

(B)
$$y = \sqrt{2}x$$

(C)
$$y = x - \frac{\pi}{4}$$

$$(D) y = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$$

(E)
$$y = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)$$

$$h'(x) = \sin^2 x$$

$$h'\left(\frac{\pi}{4}\right) = \left(\sin\frac{\pi}{4}\right)^2 = \frac{1}{2}$$

$$h\left(\frac{\tau}{4}\right)=0$$

$$y = 0 + \frac{1}{2} \left(x - \frac{TT}{4} \right)$$

MUT	(1) ((9)
f'(c) =	(b)-f(a)

х	f(x)
-1	-30
0	-2
3	10
5	18

- 21. The table above gives selected values for a wice-differentiable function f. Which of the following must be true?
 - (A) f has no critical points in the interval -1 < x < 5.
 - (B) f'(x) = 8 for some value of x in the interval -1 < x < 5.2
 - (C) f'(x) > 0 for all values of x in the interval -1 < x < 5.
 - (D) f''(x) < 0 for all values of x in the interval -1 < x < 5.
 - (E) The graph of f has no points of inflection in the interval -1 < x < 5.

22. A particle moves along the x-axis so that at time $t \ge 0$, the acceleration of the particle is $a(t) = 15\sqrt{t}$. The position of the particle is 10 when t = 0, and the position of the particle is 20 when t = 1. What is the velocity of the particle at time t = 0?

(A) -14

$$5/2$$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$
 $5/2$