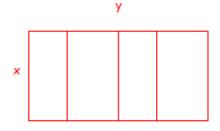
- 1. Let x be one of the numbers $\rightarrow 100 x$ is the other. P(x) = x(100 - x) P'(x) = 100 - 2x P'(x) = 0 when x = 50
 - \therefore the numbers are 50 and 50.
- 2. Let x be one of the numbers $\rightarrow \frac{100}{x}$ is the other. $S(x) = \frac{100}{x} + x$ $S'(x) = \frac{x^2 - 100}{x^2}$ $S'(x) = 0 \text{ when } x^2 - 100 = 0 \rightarrow x = 10 \text{ or } x = -10$ We choose x = -10, \therefore the numbers are -10 and -10
- 3. Let x be the width and y be the length.

$$P = 2x + 2y \rightarrow y = \frac{P - 2x}{2}$$

Now, $A = xy$ so $A(x) = x\left(\frac{P - 2x}{2}\right) \rightarrow A(x) = \frac{P}{2}x - x^2$
 $A'(x) = \frac{P}{2} - 2x$
 $A'(x) = 0$ when $x = \frac{P}{4}$
Since $x = \frac{P}{4}$ the rectangle must be a square!

4. Long sides will be y and all short sides will be x.



Since the total fence to be used is 750, $5x + 2y = 750 \rightarrow y = \frac{750 - 5x}{2}$ Now, $A(x) = x \left(\frac{750 - 5x}{2}\right) \rightarrow A(x) = 375x - \frac{5}{2}x^2$ A'(x) = 375 - 5xA'(x) = 0 when $x = 75 \rightarrow A(75) = 14062.500$ \therefore the maximum area is 14062.500 square feet. 5. Let the length and width of the base be x and h be the height. $\rightarrow x^2 + 4xh = 1200 \rightarrow h = \frac{1200 - x^2}{4x}$

Now,
$$V(x) = x^2 \left(\frac{1200 - x^2}{4x}\right) \rightarrow V(x) = 300x - \frac{1}{4}x^3$$

 $V'(x) = 300 - \frac{3}{4}x^2 \rightarrow V'(x) = 0$ when $x = 20$ or $x = -20$.

Choosing $x = 20 \rightarrow V(20) = 4000$: the maximum volume is 4000 cubic cm.

6. Let w be the width, 2w be the length, and h the height.

Now, $V = 2x^2h$ and since $V = 10 \rightarrow 10 = 2w^2h \rightarrow h = \frac{5}{w}$.

We have a bottom of area $2w^2$, 2 sides of area $\frac{5}{w}$ and 2 sides of $\frac{10}{w}$.

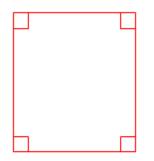
The cost function then becomes $C(w) = 10(2w^2) + 6(2)\left(\frac{5}{w}\right) + 6(2)\left(\frac{10}{w}\right)$

Simplifying yields $C(w) = \frac{20w^3 + 180}{w}$.

Now,
$$C'(w) = \frac{40w^3 - 180}{w^2}$$

C'(w) = 0 when $40w^3 - 180 = 0 \rightarrow w = 1.651$. \therefore the minimum cost occurs when $w = 1.651 \rightarrow C(1.651) = 163.54 \rightarrow$ the minimum cost is \$163.54.

7. If x is the length of the small cutout square, the the width becomes 3 - 2x and the length becomes 3 - 2x and the height of the box will be x.



 $V(x) = x(3-2x)^2 \rightarrow V(x) = 4x^3 - 12x^2 + 9x$

$$V'(x) = 12x^2 - 24x + 9 \rightarrow V'(x) = 0$$
 when $x = .500$ or $x = 1.500$

We choose x = .5 because x = 1.5 creates an "unbox"!

V(.500) = 2 : the maximum volume of the box is 2 cubic feet.

8. Any point on the curve can be described as (x, 2x - 3).

$$D = \sqrt{(x-0)^2 + (2x-3-0)^2} \rightarrow D = \sqrt{5x^2 - 12x + 9}$$

Now, minimizing the square root of a number is equivalent to minimizing the number itself so we use

$$D(x) = 5x^2 - 12x + 9.$$

$$D'(x) = 10x - 12 \rightarrow D'(x) = 0 \text{ when } x = \frac{6}{5} \rightarrow y = -\frac{3}{5}$$

Thus, the point on $y = 2x - 3$ that is closest to $(0, 0)$ is the point $\left(\frac{6}{5}, -\frac{3}{5}\right)$

9. Any point on the curve can be described as $(x, \sqrt{4+x^2})$.

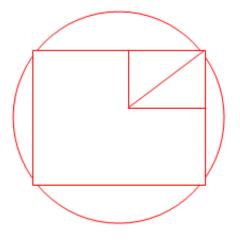
Again, minimizing the square root of a number is equivalent to minimizing the number itself so we use

$$D(x) = (x-2)^2 + \left[\sqrt{4+x^2}\right]^2 \to D(x) = 2x^2 - 4x + 8.$$

$$D'(x) = 4x - 4 \to D'(x) = 0 \text{ when } x = 1 \to y = \sqrt{5} \text{ or } x = -\sqrt{5}$$

Thus, the points on $y^2 - x^2 = 4$ that are closest to (2,0) are the points $(1,\sqrt{5})$ and $(1,-\sqrt{5})$

10. Let x be half the height of the rectangle and y be half the width and r the radius of the circle ... where r is a constant.



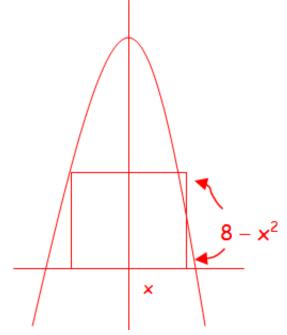
 $r^2 = x^2 + y^2 \rightarrow y = \sqrt{r^2 - x^2}$ The area of the rectangle is $A = 4xy \rightarrow A(x) = 4x\sqrt{r^2 - x^2}$

Now
$$A'(x) = \frac{4r^2 - 8x^2}{\sqrt{r^2 - x^2}} \rightarrow A'(x) = 0$$
 when $x = \frac{\sqrt{2}}{2}r$

 \therefore the dimensions of the rectangle with the largest area are $r\sqrt{2}$ by $r\sqrt{2}$

Note: Remember, x was half the height, so we need to multiply x by 2 to get the dimensions.

11. Any point on the parabola can be described as $(x, 8 - x^2)$



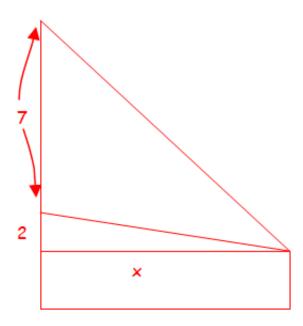
The area of one-half the rectangle is then $x(8-x^2)$ so $A(x) = 16x - x^3$.

Now, $A'(x) = 16 - 6x^2 \rightarrow A'(x) = 0$ when $x = \frac{2\sqrt{6}}{3}$ or $x = -\frac{2\sqrt{6}}{3}$. We will use the positive value.

 \therefore the length of the base of the rectangle of maximum area is $\frac{4\sqrt{6}}{3}$ and the height is $\frac{16}{3}$ Note: Again, in this problem we let x be one-half the length of the base so we must multiply it by 2 to get the length of

the base.

12. From the diagram below we will let the angle opposite the 7-foot picture be θ and the angle opposite the 2-foot level be α . We then let $\beta = \alpha + \theta$.

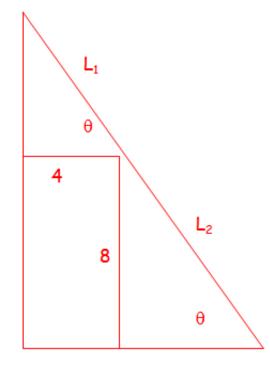


Since $\beta = \alpha + \theta \rightarrow \theta = \beta - \alpha$.

$$\theta(x) = \tan^{-1}\frac{9}{x} - \tan^{-1}\frac{2}{x} \to \theta'(x) = \frac{126 - 7x^2}{x^4 + 85x^2 + 324}$$

 $\theta'(x) = 0$ when $x = -3\sqrt{2}$ or $x = 3\sqrt{2}$. We take the positive value and therefore the person should stand $3\sqrt{2}$ feet from the wall...about 4.243 feet.

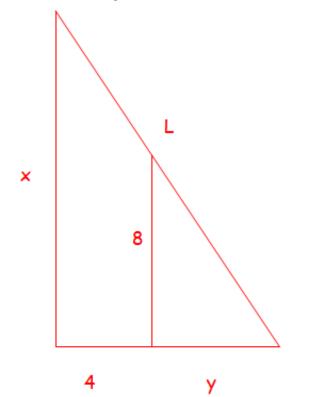
13. From the diagram below, $L = L_1 + L_2$.



 $\sin \theta = \frac{8}{L_2} \rightarrow L_2 = 8 \csc \theta$ $\cos \theta = \frac{4}{L_1} \rightarrow L_1 = 4 \sec \theta$ Since $L = L_1 + L_2 \rightarrow L(\theta) = 8 \csc \theta + 4 \sec \theta$. $L'(\theta) = -8 \csc \theta \cot \theta + 4 \sec \theta \tan \theta$ $L'(\theta) = 0$ when $\theta = \tan^{-1} \sqrt[3]{2} \approx .900$ $L(\sqrt[3]{2}) \approx 16.648$ \therefore the shortest ladder will have length 16.648.

An alternate solution using similar triangles can be found on the following page.

14. From similar triangles.



$$\frac{8}{y} = \frac{x}{y+4}$$

 $8y + 32 = xy$
 $x = \frac{8y+32}{y}$
Now $L^2 = x^2 + (y+4)^2$
 $L^2(y) = \left(\frac{8y+32}{y}\right)^2 + y^2 + 8y + 16$
 $(L^2)'(y) = \frac{2(y^4 + 4y^3 - 256y - 1024)}{y^3}$
 $(L^2)'(y) = 0$ when $y = -4$ or $y = 4\sqrt[3]{4} \rightarrow y = 4\sqrt[3]{4} \rightarrow x = 4\sqrt[3]{4}\left(1 + \sqrt[3]{4}\right)$
 $\therefore L \approx 16.648$