1. Verification

f is continuous on [-1,1] and since $f'(x) = 3x^2 - 1$, $f' \exists \forall x \in (-1,1) \therefore f$ is differentiable on (-1,1) and since f(-1) = f(1) = 0, Rolle's theorem holds for f on the given interval.

Finding c

f'(x) = 0 when $3x^2 - 1 = 0 \rightarrow x = \frac{1}{\sqrt{3}}$ or $x = -\frac{1}{\sqrt{3}}$ Since both of these values are in (-1, 1), $c = \frac{1}{\sqrt{3}}$ or $c = -\frac{1}{\sqrt{3}}$

2. Verification

f is continuous on $[0, 2\pi]$ and since $f'(x) = -2\sin 2x$, $f' \exists \forall x \in (0, 2\pi)$ \therefore f is differentiable on $(0, 2\pi)$ and since $f(0) = f(2\pi) = 1$, Rolle's theorem holds for f on the given interval.

Finding c

f'(x) = 0 when $-2\sin 2x = 0 \rightarrow x = 0$ or $x = \frac{\pi}{2}$ or $x = \pi$ or $x = \frac{3\pi}{2}$ or $x = 2\pi$ Taking only those values in $(0, 2\pi)$, $c = \frac{\pi}{2}$ or $c = \pi$ or $c = \frac{3\pi}{2}$

3. f(-1) = f(1) = 0 but since $f'(x) = -\frac{2}{3\sqrt[3]{x}}$, f' can never be zero because $2 \neq 0$.

This does not contradict Rolle's theorem because f' does not exist at x = 0 and therefore is not differentiable on (-1, 1) and so Rolle's theorem does not hold.

4. Connect the endpoints of sketch with a line segment. Then use a straightedge to draw lines that are tangent to the curve and parallel to the segment. Estimate the *x*-coordinate of the tangent points. All your tangents should have a slope of approximately $\frac{5}{2}$.

5. Verification

f is continuous on [0,3] and since f'(x) = -2x, $f' \exists \forall x$ and so f is differentiable on (0,3). the Mean Value Theorem holds for f on the given interval.

Finding c

$$\overline{f'(c)} = -2c \text{ and } \frac{f(3) - f(0)}{3 - 0} = -3 \rightarrow -2x = -3 \rightarrow c = \frac{3}{2}.$$

6. Verification

f is continuous on [1, 2] and since $f'(x) = -\frac{1}{x^2}$, $f' \exists \forall x \in (1, 2)$ and so f is differentiable on (1, 2). the Mean Value Theorem holds for f on the given interval.

Finding c

$$f'(c) = -\frac{1}{c^2}$$
 and $\frac{f(2) - f(1)}{2 - 1} = -\frac{1}{2} \rightarrow -\frac{1}{c^2} = -\frac{1}{2} \rightarrow c = \sqrt{2}$ or $c = -\sqrt{2}$ but $-\sqrt{2}$ is not in $(1, 2)$ $\therefore c = \sqrt{2}$.

7. Verification

f is continuous on [2,9] and since $f'(x) = \frac{1}{3\sqrt[3]{(x-1)^2}}$, $f' \exists \forall x \in (2,9)$ and so f is differentiable on (2,9). the Mean Value Theorem holds for f on the given interval.

Finding c

 $f'(c) = \frac{1}{3\sqrt[3]{(c-1)^2}}$ and $f(9) - f(2)9 - 2 = \frac{1}{7} \rightarrow c = 4.564$ or c = -2.564 but c = -2.564 is not in (2,9) $\therefore c = 4.564$.

8.
$$f(x) = \begin{cases} x-1 & x \ge 1\\ 1-x & x < 1 \end{cases} \to f'(x) = \begin{cases} 1 & x > 1\\ -1 & x < 1 \end{cases}$$

Now, for $a = a$ and $b = 3$, $\frac{f(b) - f(a)}{b-a} = \frac{1}{3}$ but $f'(x)$ is never equal to $\frac{1}{3}$.

This does not contradict the Mean Value Theorem because f is not differentiable on (0,3) since $f'(1) \not\equiv$.