- 1. $a \rightarrow absolute minimum$
 - $b \rightarrow \text{relative maximum}$
 - $c \rightarrow relative \ minimum$
 - $d \rightarrow relative \ maximum$
 - $e \rightarrow relative \ minimum$
 - $f \rightarrow \text{relative maximum}$
 - $g \rightarrow \text{relative minimum}$
 - $h \rightarrow absolute \ maximum$
- 2. No relative extrema. Absolute minimum of -1 at x = -1No absolute maximum.
- 3. No relative extrema. No absolute extrema.
- 4. No relative extrema. Absolute maximum of 1 at x = 0. Absolute minimum of 0 at x = 1.
- 5. Absolute maximum of 1 at x = 0. Absolute minimum of -3 at x = -2. No relative minimum at x = 1 since f does not exist to the right of x = 1.
- 6. No extrema.

7. Absolute maximum of 1 at
$$x = \frac{\pi}{2}$$
 and $x = -\frac{3\pi}{2}$
Absolute minimum of -1 at $x = \frac{3\pi}{2}$ and $x = -\frac{\pi}{2}$

- 8. No extrema
- 9. Absolute minimum of 0 at x = 0 and x = 2 No absolute maximum. No relative extrema.

10. f'(x) = 2 - 6x

• $f' \exists \forall x$

•
$$f'(x) = 0$$
 when $x = \frac{1}{3}$.

 $\therefore x = \frac{1}{3}$ is the only critical number.

11.
$$f'(x) = 3x^2 - 3$$

•
$$f' \exists \forall x$$

• f'(x) = 0 when x = 1 or x = -1.

 $\therefore x = 1$ and x = -1.

12. $f'(x) = 6t^2 + 6t + 6$

•
$$f' \exists \forall x$$

•
$$f'(x) \neq 0$$

.: no critical numbers.

13. $s'(t) = 6t^2 + 6t - 6$ • $s' \exists \forall t$ • s'(t) = 0 when $t^2 + t - 1 = 0 \to t = \frac{-1 + \sqrt{5}}{2}$ or $t = \frac{-1 - \sqrt{5}}{2}$ ∴ critical numbers are $t = \frac{-1 + \sqrt{5}}{2}$ and $t = \frac{-1 - \sqrt{5}}{2}$ 14. $g'(x) = \frac{1}{9\sqrt[9]{x^8}}$ • $g' \nexists \text{ at } x = 0$ • g'(x) never zero

 \therefore critical number is x = 0. (Note: zero *is* in the domain of *q*.)

15. $g'(t) = \frac{10 + 5t}{3\sqrt[3]{t}}$ • $g' \nexists \text{ at } t = 0$ • g'(t) = 0 when t = -2

 \therefore critical numbers are t = 0 and t = -2

16.
$$f'(r) = \frac{1 - r^2}{(r^2 + 1)^2}$$

- $f' \exists \forall r \text{ because } r^2 + 1 \neq 0$
- f'(r) = 0 when $1 r^2 = 0 \rightarrow r = 1$ or r = -1

 \therefore critical numbers are r = 1 and r = -1

17.
$$f'(x) = \frac{2(x-4)(7x-8)}{5\sqrt[5]{x}}$$

•
$$f' \neq \text{ at } x = 0$$

• $f'(x) = 0$ when $(x - 4)(7x - 8) = 0 \rightarrow x = 4$ or $x = \frac{8}{7}$

: critical numbers are x = 4 and $x = \frac{8}{7}$ and x = 0

18.
$$f'(x) = 2\cos 2x$$

•
$$f' \exists \forall x \in [0, 2\pi]$$

•
$$f'(x) = 0$$
 when $x = \frac{\pi}{4}$ or $x = \frac{3\pi}{4}$ or $x = \frac{5\pi}{4}$ or $x = \frac{7\pi}{4}$

 \therefore critical numbers are $x = \frac{\pi}{4}$ and $x = \frac{3\pi}{4}$ and $x = \frac{5\pi}{4}$ and $x = \frac{7\pi}{4}$

19. $f'(x) = 1 + \ln x$

- $f' \exists \forall x > 0$
- f'(x) = 0 when $1 + \ln x = 0 \to x = \frac{1}{e}$

 \therefore critical number is $x = \frac{1}{e}$

20. f'(x) = 2x - 2

$$f' \exists \forall x$$

in [0, 3] and f'(x) = 0 when $x = 1 \rightarrow$ only critical number is x = 1. Since f(0) = 2, f(3) = 5 and f(1) = 1, by the Extreme Value Theorem f has an absolute maximum of 5 at x = 3 and an absolute minimum of 1 at x = 1.

21. $f'(x) = 3x^2 - 12$

 $f' \exists \forall x \in [-3, 5] \text{ and } f'(x) = 0 \text{ when } x = 2 \text{ or } x = -2 \rightarrow \text{critical numbers are } x = 2 \text{ and } x = -2.$ Since f(-3) = 10, f(5) = 66, f(2) = -15 and f(-2) = 17, by the Extreme Value Theorem f has an absolute maximum of 66 at x = 5 and an absolute minimum of -15 at x = 2.

22. $f'(x) = 6x^2 + 6x$

 $f' \exists \forall x \in [-2, 1]$ and f'(x) = 0 when $6x(x+1) = 0 \rightarrow x = 0$ or x = -1. critical numbers are x = 0 and x = -1. Since f(-2) = 0, f(1) = 9, f(0) = 4 and f(-1) = 5, by the Extreme Value Theorem f has an absolute maximum of 9 at x = 1 and an absolute minimum of 0 at x = -2.

23. $f'(x) = 4x^3 - 8x$

 $f' \exists \forall x \in [-3, 2] \text{ and } f'(x) = 0 \text{ when } 4x(x^2 - 2) = 0 \rightarrow x = 0 \text{ or } x = \sqrt{2} \text{ or } x = -\sqrt{2}$. critical numbers are x = 0 and $x = \sqrt{2}$ and $x = -\sqrt{2}$. Since f(-3) = 47, f(2) = 2, f(0) = 2 and $f(\sqrt{2}) = -2$ and $f(-\sqrt{2}) = -2$, by the Extreme Value Theorem f has an

absolute maximum of 47 at x = -3 and an absolute minimum of -2 at $x = \sqrt{2}$ and $x = -\sqrt{2}$.

24.
$$f'(x) = \frac{2x^3 - 2}{x^2}$$

 $f' \nexists$ at x = 0 but x = 0 is not in $[\frac{1}{2}, 2]$ $\therefore x = 0$ is not a critical number. f'(x) = 0 when $2x^3 - 2 = 0 \rightarrow x = 1$ $\therefore x = 1$ is the only critical number.

Since $f(\frac{1}{2}) = \frac{17}{4}$, f(2) = 5 and f(1) = 3, by the Extreme Value Theorem f has an absolute maximum of 5 at x = 2 and an absolute minimum of 3 at x = 1.

25. $f'(x) = \frac{4}{5\sqrt[5]{x}}$

 $f' \nexists$ at x = 0 and $f'(x) \neq 0$. only critical number is x = 0. Since f(-32) = 16 and f(1) = 1 and f(0) = 0, by the Extreme Value Theorem f has an absolute maximum of 16 at x = -32 and an absolute minimum of 0 at x = 0.

26. $f'(x) = \frac{1-x}{e^x}$

 $f' \exists \forall x \in [0, 1] \text{ and } f'(x) = 0 \text{ when } x = 1 \therefore x = 1 \text{ is the only critical number.}$ Since f(0) = 0 and $f(1) = \frac{1}{e}$, by the Extreme Value Theorem f has an absolute maximum of $\frac{1}{e}$ at x = 1 and an absolute minimum of 0 at x = 0.

27. $f'(x) = \frac{1 - \ln x}{x^2}$

 $f' \exists \forall x \in [1,3] \text{ and } f'(x) = 0 \text{ when } x = e :$ the only critical number is x = e. Since f(1) = 0 and $f(3) = \frac{\ln 3}{3}$ and $f(e) = \frac{1}{e}$, by the Extreme Value Theorem f has an absolute maximum of $\frac{1}{e}$ at x = e and an absolute minimum of 0 at x = 1.

28. Answers my vary. A simple linear graph like f(x) = x with a hole at some x between 0 and 1 would do. Below is just one example.

