1. $f'(x) = 3x^2 - 1$

Critical numbers: $f' \exists \forall x.$ f'(x) = 0 when $3x^2 - 1 = 0 \rightarrow x = \frac{\sqrt{3}}{3}$ or $x = -\frac{\sqrt{3}}{3}$.

Second Derivative Test:

$$f''\left(-\frac{\sqrt{3}}{3}\right) = -2\sqrt{3} < 0 \to f \text{ is concave down } \to f \text{ has a relative maximum of } \frac{2\sqrt{3}}{9} \text{ at } x = -\frac{\sqrt{3}}{3}.$$
$$f''\left(\frac{\sqrt{3}}{3}\right) = 2\sqrt{3} > 0 \to f \text{ is concave up } \to f \text{ has a relative minimum of } -\frac{2\sqrt{3}}{9} \text{ at } x = \frac{\sqrt{3}}{3}.$$

2. $f'(x) = 6x^2 + 10x - 4$

Critical numbers: $f' \exists \forall x.$ f'(x) = 0 when $6x^2 + 10x - 4 = 0 \rightarrow x = -2$ or $x = \frac{1}{3}$.

Second derivative test:

$$f''(-2) = -14 < 0 \to f \text{ is concave down } \to f \text{ has a relative maximum of } 12 \text{ at } x = -2.$$

$$f''\left(\frac{1}{3}\right) = 14 > 0 \to f \text{ is concave up } \to f \text{ has a relative minimum of } -\frac{19}{27} \text{ at } x = \frac{1}{3}.$$

3. $f'(x) = 3x^2 - 1$ f''(x) = 6x

> Possible inflection points: $f'' \exists \forall x$ f''(x) = 0 when x = 0

Analysis:

 $\begin{array}{l} f''(x) < 0 \text{ on } (-\infty,0) \rightarrow f \text{ is concave down on } (-\infty,0). \\ f''(x) > 0 \text{ on } (0,\infty) \rightarrow f \text{ is concave up on } (0,\infty). \\ \text{Since } f''(x) > 0 \text{ on } (0,\infty) \text{ and } f''(x) < 0 \text{ on } (-\infty,0) \text{ and } f(0) = 0, f \text{ has an inflection point at } (0,0). \end{array}$

4. $f'(x) = 4x^3 - 12x$ $f''(x) = 12x^2 - 12$

> Possible inflection points: $f'' \exists \forall x$ f''(x) = 0 when $12x^2 - 12 = 0 \rightarrow x = 1$ or x = -1.

Analysis: Since f''(x) > 0 on $(-\infty, -1) \cup (1, \infty) \rightarrow f$ is concave up on $(-\infty, -1) \cup (1, \infty)$. Since f''(x) < 0 on $(-1, 1) \rightarrow f$ is concave down on (-1, 1).

Since f''(x) > 0 on $(-\infty, -1)$ and f''(x) < 0 on (-1, 1) and f(-1) = -5, *f* has an inflection point at (-1, -5). Since f''(x) < 0 on (-1, 1) and f''(x) > 0 on $(1, \infty)$ and f(1) = -5, *f* has an inflection point at (1, -5).

5.
$$f'(x) = 15x^4 - 15x^2$$

 $f''(x) = 60x^3 - 30x$

Possible inflection points:

 $f'' \exists \forall x$ f''(x) = 0 when $60x^3 - 30x = 0 \rightarrow x = 0$ or x = .707 or x = -.707.

Analysis:

Since f''(x) > 0 on $(-.707, 0) \cup (.707, \infty) \to f$ is concave up on $(-.707, 0) \cup (.707, \infty)$. Since f''(x) < 0 on $(-\infty, -.707) \cup (0, .707) \to f$ is concave down on $(-\infty, -.707) \cup (0, .707)$.

Since f''(x) < 0 on $(-\infty, -.707)$ and f''(x) > 0 on (-.707, 0) and f(-.707) = 4.237, *f* has an inflection point at (-.707, 4.237). Since f''(x) > 0 on (-.707, 0) and f''(x) < 0 on (0, .707) and f(0) = 3, *f* has an inflection point at (0, 3). Since f''(x) < 0 on (0, .707) and f''(x) > 0 on $(.707, \infty)$ and f(.707) = 1.763, *f* has an inflection point at (.707, 1.763).

6.
$$P'(x) = \frac{2x^2 + 1}{\sqrt{x^2 + 1}}$$

 $P''(x) = \frac{2x^3 + 3x}{\sqrt{(x^2 + 1)^3}}$

Possible inflection points: $P'' \exists \forall x$ P''(x) = 0 when $2x^3 + 3x = 0 \rightarrow x = 0$

Analysis: Since P''(x) > 0 on $(0, \infty) \to P$ is concave up on $(0, \infty)$. Since P''(x) < 0 on $(-\infty, 0) \to P$ is concave down on $(-\infty, 0)$.

Since P''(x) < 0 on $(-\infty, 0)$ and P''(x) > 0 on $(0, \infty)$ and P(0) = 0, P has an inflection point at (0, 0).

7.
$$f'(x) = \frac{x+1}{x^{2/3}(x+3)^{1/3}}$$

 $f''(x) = \frac{-2}{x^{5/3}(x+3)^{4/3}}$

Possible inflection points: $f'' \nexists$ when $x^{5/3}(x+3)^{4/3} = 0 \rightarrow x = 0$ or x = -3f''(x) never zero

Analysis: Since f''(x) > 0 on $(-\infty, -3) \cup (-3, 0) \rightarrow f$ is concave up on $(-\infty, -3) \cup (-3, 0)$. Since f''(x) < 0 on $(0, \infty) \rightarrow f$ is concave down on $(0, \infty)$

Since f''(x) > 0 on (-3,0) and f''(x) < 0 on $(0,\infty)$ and f(0) = 0, f has an inflection point at (0,0).

8.
$$h'(\theta) = 2\sin\theta\cos\theta$$

 $h''(\theta) = 4\cos^2\theta - 2$

Possible inflection points:

 $h''(\theta) \exists \forall x \in [0, 2\pi]$ $h''(\theta) = 0$ when $\theta = \frac{\pi}{4}$ or $\theta = \frac{3\pi}{4}$ or $\theta = \frac{5\pi}{4}$ or $\theta = \frac{7\pi}{4}$

Analysis:

Since
$$h''(\theta) > 0$$
 on $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \cup \left(\frac{7\pi}{4}, 2\pi\right) \to h$ is concave up on $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \cup \left(\frac{7\pi}{4}, 2\pi\right)$.
Since $h''(\theta) < 0$ on $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \cup \left(\frac{5\pi}{4}, \frac{7\pi}{4}\right) \to h$ is concave down on $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \cup \left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$.

Since
$$h''(\theta) > 0$$
 on $\left(0, \frac{\pi}{4}\right)$ and $h''(\theta) < 0$ on $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ and $h\left(\frac{\pi}{4}\right) = \frac{1}{2}$, h has an inflection point at $\left(\frac{\pi}{4}, \frac{1}{2}\right)$.
Since $h''(\theta) < 0$ on $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ and $h''(\theta) > 0$ on $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ and $h\left(\frac{3\pi}{4}\right) = \frac{1}{2}$, h has an inflection point at $\left(\frac{3\pi}{4}, \frac{1}{2}\right)$.
Since $h''(\theta) > 0$ on $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ and $h''(\theta) < 0$ on $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$ and $h\left(\frac{5\pi}{4}\right) = \frac{1}{2}$, h has an inflection point at $\left(\frac{5\pi}{4}, \frac{1}{2}\right)$.
Since $h''(\theta) < 0$ on $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$ and $h''(\theta) > 0$ on $\left(\frac{7\pi}{4}, 2\pi\right)$ and $h\left(\frac{7\pi}{4}\right) = \frac{1}{2}$, h has an inflection point at $\left(\frac{7\pi}{4}, \frac{1}{2}\right)$.

9.
$$\frac{dy}{dx} = -4x^3 - 6x^2 + 12x$$
$$\frac{d^2y}{dx^2} = -12x^2 - 12x + 12$$

Possible inflection points:

$$\frac{d^2y}{dx^2} \exists \forall x$$
$$\frac{d^2y}{dx^2} = 0 \text{ when } x = .618 \text{ or } x = -1.618$$

Analysis:

Since
$$\frac{d^2y}{dx^2} < 0$$
 on $(-\infty, -1.618) \cup (.618, \infty) \rightarrow y = 6x^2 - 2x^3 - x^4$ is concave down on $(-\infty, -1.618) \cup (.618, \infty)$.
Since $\frac{d^2y}{dx^2} > 0$ on $(-1.618, .618) \rightarrow y = 6x^2 - 2x^3 - x^4$ is concave up on $(-1.618, .618)$.

Since
$$\frac{d^2y}{dx^2} < 0$$
 on $(-\infty, -1.618)$ and $\frac{d^2y}{dx^2} > 0$ on $(-1.618, .618)$ and $y(-1.618) = 17.326$, $y = 6x^2 - 2x^3 - x^4$ has an inflection point at $(-1.618, 17.326)$

Since $\frac{d^2y}{dx^2} > 0$ on (-1.618, .618) and $\frac{d^2y}{dx^2} < 0$ on $(.618, \infty)$ and y(.618) = 1.674, $y = 6x^2 - 2x^3 - x^4$ has an inflection point at (.618, 1.674)

10.
$$\frac{dy}{dx} = \frac{1-x}{(x+1)^3}$$

$$\frac{d^3y}{dx^2} = \frac{2(x-2)}{(x+1)^4}$$
Possible inflection points:
$$\frac{d^3y}{dx^2} \ddagger \text{ when } x = -1.$$

$$\frac{d^3y}{dx^2} = 0 \text{ when } x = 2$$
Analysis:
Since $\frac{d^3y}{dx^2} < 0 \text{ on } (-\infty, -1) \cup (-1, 2) \rightarrow y = \frac{x}{(1+x)^2} \text{ is concave down on } (-\infty, -1) \cup (-1, 2).$
Since $\frac{d^2y}{dx^2} < 0 \text{ on } (-1, 2) \text{ and } \frac{d^2y}{dx^2} > 0 \text{ on } (2, \infty); \rightarrow y = \frac{x}{(1+x)^2} \text{ is concave up on } (2, \infty).$
Since $\frac{d^2y}{dx^2} < 0 \text{ on } (-1, 2) \text{ and } \frac{d^2y}{dx^2} > 0 \text{ on } (2, \infty) \text{ and } y(2) = \frac{2}{9}, y = \frac{x}{(1+x)^2} \text{ has an inflection point at } \left(2, \frac{2}{9}\right).$
11.
$$\frac{dy}{dx} = e^x(x+1)$$

$$\frac{d^2y}{dx^2} = e^x(x+2)$$
Possible inflection points:
$$\frac{d^2y}{dx^2} = e^x(x+2)$$
Possible inflection points:
$$\frac{d^2y}{dx^2} = 0 \text{ when } x = -2$$
Analysis:
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-2, \infty) \rightarrow y = xe^x \text{ is concave up on } (-2, \infty).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave down on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2) \rightarrow y = xe^x \text{ is concave up on } (-\infty, -2).$
Since $\frac{d^2y}{dx^2} > 0 \text{ on } (-\infty, -2)$, and $y(-2) = -\frac{2}{e^2}, y = xe^x$ has an inflection point at $\left(-2, -\frac{2}{e^2}, y = xe^x \text{ is an inflection point at } \left(-2, -\frac{2}{e^2}, y = xe^x \text{ is an inflection point at } \left(-2, -\frac{2}{e^2}, y = xe^x \text{ is an inflection point at } \left(-2, -\frac{2}{e^2}, y = xe^x \text{ is an inflection point at } \left(-2, -\frac{2}{e^2}, y = xe^x \text{ is an inflection point a$

Possible inflection points: $f' \nexists$ when x = 0f''(x) = 0 when $-8 + 3 \ln x = 0 \rightarrow x = e^{8/3}$

Analysis:

Since f''(x) > 0 on $(e^{8/3}, \infty) \rightarrow f$ is concave up on $(e^{8/3}, \infty)$.

 $\text{Since } f^{\prime\prime}(x) < 0 \text{ on } (0, e^{8/3}) \ \rightarrow \ f \text{ is concave down on } (0, e^{8/3}).$

Since f''(x) < 0 on $(0, e^{8/3})$ and f''(x) > 0 on $(e^{8/3}, \infty)$, and $f(e^{8/3}) = \frac{8}{3e^{4/3}}$, f has an inflection point at $\left(e^{8/3}, \frac{8}{3e^{4/3}}\right)$

13. Your sketch should look similar to this one:

14. Your sketch should look similar to this one:

15. Your sketch should look similar to this one:

16. Your sketch should look similar to this one:

17. Your sketch should look similar to this one:

