1. Horizontal line test.

2.
$$f'(x) = 7$$

f has an inverse because $f'(x) \ge 0 \ \forall x$ in f.

3.
$$g'(x) = \frac{1}{2\sqrt{x}}$$

f has an inverse because $f'(x) \ge 0 \ \forall x$ in f.

4. $h'(x) = 4x^3$

f has no inverse because h'(x) < 0 on $(-\infty, 0)$ and h'(x) > 0 on $(0, \infty)$.

5.
$$f'(x) = \frac{17}{(5-2x)^2}$$

f has an inverse because $f'(x) \ge 0 \forall x$ in f.

6.
$$f'(x) = \frac{5}{2\sqrt{2+5x}}$$

f has an inverse because $f'(x) \ge 0 \forall x$ in f.

7. Finding the inverse

Let
$$y = f(x)$$

 $y = 2x + 1$
 $x = \frac{y - 1}{2}$
 $f^{-1}(y) = \frac{y - 1}{2}$
 $f^{-1}(x) = \frac{x - 1}{2}$

 $\frac{\text{Derivative of } f^{-1}(x)}{(f^{-1})'(x) = \frac{1}{2}}$ $(f^{-1})'(3) = \frac{1}{2}$

Using the theorem

 $\begin{aligned} 2c+1 &= 3 &\longrightarrow c = 1 &\longrightarrow (1,3) \text{ is on } f. \\ f'(x) &= 2 &\longrightarrow f'(1) = 2 \\ \text{Since } (1,3) \text{ is on } f, (f^{-1})'(3) &= \frac{1}{f'(1)} = \frac{1}{2} \end{aligned}$

8. Finding the inverse

Let
$$y = f(x)$$

 $y = x^{3}$
 $x = y^{1/3}$
 $f^{-1}(y) = y^{1/3}$
 $f^{-1}(x) = x^{1/3}$

$$\underline{\text{Derivative of } f^{-1}(x)}$$

$$(f^{-1})'(x) = \frac{1}{3\sqrt[3]{x^2}}$$
$$(f^{-1})'(8) = \frac{1}{12}$$

Using the theorem

$$c^{3} = 8 \longrightarrow c = 2 \longrightarrow (2,8)$$
 is on f .
 $f'(x) = 3x^{2} \longrightarrow f'(2) = 12$
Since (2,8) is on f , $(f^{-1})'(8) = \frac{1}{f'(2)} = \frac{1}{12}$

9. Finding the inverse

Let
$$y = f(x)$$

 $y = 9 - x^2$
 $x = \sqrt{9 - y}$
 $f^{-1}(y) = \sqrt{9 - y}$
 $f^{-1}(x) = \sqrt{9 - x}$

 $\frac{\text{Derivative of } f^{-1}(x)}{\left(f^{-1}\right)'(x) = -\frac{1}{2\sqrt{9-x}}}$ $\left(f^{-1}\right)'(8) = -\frac{1}{2}$

Using the theorem

 $9 - c^2 = 8 \longrightarrow c = 1 \text{ or } c = -1 \text{ but } -1 \text{ not in } f \longrightarrow (1, 8) \text{ is on } f.$ $f'(x) = -2x \longrightarrow f'(1) = -2$ Since (1, 8) is on f, $(f^{-1})'(8) = \frac{1}{f'(1)} = -\frac{1}{2}$

10.
$$c^{3} + c + 1 = 1 \longrightarrow c = 0 \longrightarrow (0, 1)$$
 is on f .
 $f'(x) = 3x^{2} + 1 \longrightarrow f'(0) = 1$
Since $(0, 1)$ is on f , $(f^{-1})'(1) = \frac{1}{f'(0)} = 1$
11. $c^{5} - c^{3} + 2c = 2 \longrightarrow c = 1 \longrightarrow (1, 2)$ is on f .
 $f'(x) = 5x^{4} - 3x^{2} + 2 \longrightarrow f'(1) = 4$
Since $(1, 2)$ is on f , $(f^{-1})'(2) = \frac{1}{f'(1)} = \frac{1}{4}$
12. $\sqrt{c^{3} + c^{2} + c + 1} = 2 \longrightarrow c = 1 \longrightarrow (1, 2)$ is on f .
 $f'(x) = \frac{3x^{2} + 2x + 1}{2\sqrt{x^{3} + x^{2} + x + 1}} \longrightarrow f'(1) = \frac{3}{2}$
Since $(1, 2)$ is on f , $(f^{-1})'(2) = \frac{1}{f'(1)} = \frac{2}{3}$
13. $\frac{1 + 3c}{5 - 2c} = 2 \longrightarrow c = \frac{9}{7} \longrightarrow (\frac{9}{7}, 2)$ is on f .
 $f'(x) = \frac{17}{(5 - 2x)^{2}} \longrightarrow f'(\frac{9}{7}) = \frac{49}{17}$
Since $(\frac{9}{7}, 2)$ is on f , $(f^{-1})'(2) = \frac{1}{f'(\frac{9}{7})} = \frac{17}{49}$