$y = y_o e^{kt}$ For $y_o = 100$ and y = 200 and $t = \frac{1}{3} \longrightarrow 200 = 100 e^{k/3} \longrightarrow k = 3 \ln 2$ $y = 100 e^{(3 \ln 2)t}$

Part (b)

When $t = 10 \longrightarrow y = 100 e^{(3 \ln 2)10}$

 $y\approx 1.074~\mathrm{x}~10^{11}$

Therefore after 10 hours there will be approximately 1.074×10^{11} cells.

Part (c)

When $y = 10000 \longrightarrow 10000 = 100 e^{(3 \ln 2)t}$

$$t \approx 2.215$$

Therefore the population will reach 10000 cells after approximately 2.215 hours.

2. Part (a)

 $y = y_o e^{kt}$

For $y_o = 4000$ and y = 12000 and $t = \frac{1}{2} \longrightarrow 12000 = 4000 \ e^{k/2} \longrightarrow k = 2 \ln 3$ $y = 4000 \ e^{(2 \ln 3)t}$

Part (b)

When $t = 20 \longrightarrow y = 4000 e^{(3 \ln 2)(1/3)}$

 $y \approx 8320$

Therefore after 20 minutes there will be approximately 8320 bacteria.

Part (c)

When $y = 20000 \longrightarrow 20000 = 4000 e^{(2 \ln 3)t}$

$t\approx .732$

Therefore the population will reach 20000 bacteria after approximately .732 hours.

 $y = y_o e^{kt}$ For $y_o = 500$ and y = 8000 and $t = 3 \longrightarrow 8000 = 500 e^{3k} \longrightarrow k = \frac{4 \ln 2}{3}$ $y = 500 e^{((4 \ln 2)/3)t}$ Part (b) When $t = 4 \longrightarrow y = 500 e^{((4 \ln 2)/3)(4)}$

 $y \approx 20159$

Therefore after 4 hours there will be approximately 20159 bacteria.

Part (c)

When $y = 30000 \longrightarrow 30000 = 500 e^{((4 \ln 2)/3)t}$

$$t \approx 4.430$$

Therefore the population will reach 30000 bacteria after approximately 4.430 hours.

4. Part (a)

 $y = y_o e^{kt}$

For $y_o = 400$ and y = 25600 and $t = 4 \longrightarrow 25600 = 400 \ e^{4k} \longrightarrow k = \frac{1}{4} \ln 64$

Now, $400 = y_o e^{(2)} \frac{1}{4} \ln 64 \longrightarrow y_o \approx 50$

Therefore the initial population is about 50.

Part (b)

 $y = 50 \ e^{(t)(1/4)(\ln 64)}$

Part (c)

Doubling time given by
$$t = \frac{\ln 2}{k} \longrightarrow t = \frac{\ln 2}{\frac{1}{4}\ln 64} \longrightarrow t = \frac{2}{3}$$

Therefore the time is takes the population to double is 40 minutes.

Part (d)

 $100000 = 50 \ e^{(t)(1/4)(\ln 64)} \longrightarrow t \approx 7.311$

Therefore the population will reach 100000 in about 7.311 hours.

Using (0, 728) and (50, 906) and $y = y_o e^{kt}$ yields $906 = 728e^{50k} \longrightarrow k = \frac{1}{50} \ln \frac{906}{728}$ The population in 1900 is then given by $y = 728 e^{150k}$ where $k = \frac{1}{50} \ln \frac{906}{728} \longrightarrow y \approx 1403.207$. Therefore the population in 1900 would be approximately 1403.207 million.

To find the population in 1950 use t = 200.

$$y = 728 \ e^{200k}$$
 where $k = \frac{1}{50} \ln \frac{906}{728} \longrightarrow y \approx 1746.299$

Therefore the population in 1900 would be approximately 1746.299 million.

Part (b)

Using (0, 1608) and (50, 2517) and $y = y_o e^{kt}$ yields $2517 = 1608 e^{50k} \longrightarrow k = \frac{1}{50} \ln \frac{2517}{1608}$ The population in 1992 is then given by $y = 1608 e^{92k}$ where $k = \frac{1}{50} \ln \frac{2517}{1608} \longrightarrow y \approx 3667.286$. Therefore the population in 1992 would be approximately 3667.286 million. (About 3.7 billion)

The discrepancy may be explained by a declining mortality rate.

6. Part(a)

 $A = P_o \ e^{rt}$ $A = 20000 \ e^{.08t}$ $30000 = 20000 \ e^{.08t}$ $t \approx 5.068$

Therefore the investment will be worth 30000 dollars in about 5 years.

Part (b)

 $A = 20000 e^{.08t}$ Therefore the original investment of 20000 will be double in about 8.6 years.

 $40000 = 20000 \ e^{.08t}$

 $t \approx 8.664$

We could have also found the "doubling time" by using $t = \frac{\ln 2}{k} = \frac{\ln 2}{.08} \approx 8.664$.

- 7. Since doubling time is given by $t = \frac{\ln 2}{k}$ the interest rate would be given by $k = \frac{\ln 2}{t} = \frac{\ln 2}{12} \approx .058 \longrightarrow 5.8\%$
- 8. Doubling time is given by $t = \frac{\ln 2}{k} \longrightarrow t = \frac{\ln 2}{.04} \approx 17.$

Therefore the demand will double in 17 years ... in 2013.

Using (0, .52) and (8, .66) $y = y_o e^{kt}$ For $y_o = .52$ and y = .66 and $t = 8 \longrightarrow .66 = .52 e^{8t} \longrightarrow k = \frac{1}{8} \ln \frac{.66}{.52}$ $y = .52 e^{(1/8) \ln(.66/.52)t}$ Part (b) When $t = 28 \longrightarrow y = .52 e^{28k}$ $y \approx 1.198$ Therefore in 1998 the cost will be about \$1.20. Part (c) When $y = 1.04 \longrightarrow 1.04 = .52 e^{kt}$ $t \approx 23.259$

Therefore the cost will double in the 24th year...1994.

Note: You could also use the doubling time formula.

10. $A = P_o e^{rt}$

For $P_o = 24$ and r = .05 and t = 373,

 $A = 24 \ e^{(.05)(373)} \longrightarrow A \approx 3018584441$

Therefore, in 1999 Manhattan would be worth about 3 billion dollars.

11. $A = P_o e^{rt}$

For A = 100000 and $P_o = 1000$ and t = 50,

 $100000 = 1000 \ e^{50r} \ \longrightarrow \ r \approx .092$

Therefore the rate would have to be about 9.2%.

 $y = y_o e^{kt}$ For $y_o = .04$ and y = .32 and $t = 33 \longrightarrow .32 = .04 e^{33k} \longrightarrow k = \frac{1}{33} \ln \frac{.33}{.04} \approx .064$ Therefore the growth rate was about 6.4%

Part (b)

When $t = 37 \longrightarrow y = .04 e^{37k}$

 $y\approx .412$

Therefore the cost of a stamp in 1999 would be about 41 cents.