
AP CALCULUS
LINEARIZATIONS

1. f(1) = 1

f ′(x) = 3x2 −→ f ′(1) = 3
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6. f(0) = 0

f ′(x) = cosx −→ f ′(0) = 1

L(x) = x

7. f(0) = 1

f ′(x) = − 8

(1 + 2x)5
−→ f ′(0) = −8

L(x) = 1− 8x
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8. f(0) = 1

f ′(x) = − 1
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1− x

−→ f ′(0) = −1
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L(x) = 1− 1

2
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To find
√
0.9 we need to evaluate the linearization at an x such that 1− x = .9 −→ x = .1

L(.1) = .950 ∴
√
0.9 ≈ .950

To find
√
0.99 we need to evaluate the linearization at an x such that 1− x = .99 −→ x = .01

L(.01) = .995 ∴
√
0.99 ≈ .995

9. g(0) = 1

g′(x) =
1

3 3
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−→ g′(0) =
1

3
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To find 3
√
0.95 we need to evaluate the linearization at an x such that 1 + x = .95 −→ x = −.05

L(−.05) = .983 ∴ 3
√
0.95 ≈ .983

To find 3
√
1.1 we need to evaluate the linearization at an x such that 1 + x = 1.1 −→ x = .1

L(.1) = 1.033 ∴ 3
√
1.1 ≈ 1.033
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