
AP CALCULUS
APPLICATIONS OF THE DERIVATIVE I REVIEW
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8. v(t) = 3t2 − 12

i. v ∃ ∀ t ∈ [0,∞)

ii. v(t) = 0 when t = 2 or t = −2 but − 2 is not in [0,∞)

Since v(t) < 0 on [0, 2) the particle is moving down on [0, 2)

Since v(t) > 0 on (2,∞) the particle is moving up on (2,∞)
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Therefore the surface area in increasing at
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square centimeters per minute.

11. We need to find
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Therefore the height of the water is increasing at about .283 centimeters per second.
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12. We need to find
dz

dt
when x = 60, y = 45 and z = 75 (after 3 seconds).
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For x = 60, y = 45, z = 75,
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= 15 and

dx
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Therefore the distance between the boy and the balloon is increasing at 13 feet per second.

13. Linearization of f at x = 0
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−→ f ′(0) = 1 −→ L(x) = 1 + x
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1 + 3(.01) we will need to find L(.01).

L(.01) ≈ 1.010 −→ 3
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14. f(3) = 4
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−→ f ′(3) = −3
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Therefore L(x) = 4− 3

4
(x− 3).
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