1. The slope of any line through $(x, 1 + x + x^2)$ and (1, 3) can be written $\frac{(1 + x + x^2) - 3}{x - 1} = \frac{x^2 + x - 2}{x - 1}$. Use this expression to quickly find the necessary slopes.

(a)						
()	x	2	1.5	1.1	1.01	1.001
	Slope	4	3.500	3.100	3.010	3.001
	x	0	0.500	0.900	0.990	0.999
	Slope	2	2.500	2.900	2.990	2.999

- (b) It appears that at x gets closer and closer to 1 (from the left and right) that the slope gets closer and closer to 3. Thus m = 3.
- (c) y 3 = 3(x 1)

2. Average velocity is given by $\frac{\text{change in position}}{\text{change in time}}$ which in this case is given by $\frac{y(t_2) - y(t_1)}{t_2 - t_1}$. We are essentially looking for the slope of a line through $(t, 40t - t^2)$ and (2, 16). Thus average velocity is $\frac{40t - 16t^2 - 16}{t - 2}$.

- (a) $t_1 = 2, t_2 = 2.5 \longrightarrow v = -32$ $t_1 = 2, t_2 = 2.1 \longrightarrow v = -25.6$ $t_1 = 2, t_2 = 2.05 \longrightarrow v = -24.800$ $t_1 = 2, t_2 = 2.01 \longrightarrow v = -24.160$ $t_1 = 2, t_2 = 2.001 \longrightarrow v = -24.016$
- (b) It appears that as the interval of time gets smaller and smaller near 2, the velocity approaches -24, thus the average velocity is -24 feet per second.
- 3. Average velocity is given by $\frac{\text{change in position}}{\text{change in time}}$ which in this case is given by $\frac{s(t_2) s(t_1)}{t_2 t_1}$. We are essentially looking for the slope of a line through $\left(t, \frac{t^3}{6}\right)$ and $\left(1, \frac{1}{6}\right)$. Thus average velocity is $\frac{\frac{t^3}{6} \frac{1}{6}}{t-1} = \frac{t^3 1}{6t-6}$.
 - (a) On $[1,3] \longrightarrow v = 2.167$ On $[1,2] \longrightarrow v = 1.167$ On $[1,1.5] \longrightarrow v = .7927$ On $[1,1.1] \longrightarrow v = .552$ On $[1,1.01] \longrightarrow v = .505$ On $[1,1.001] \longrightarrow v = .501$
 - (b) It appears that as the interval of time gets smaller and smaller near t = 1, the velocity approaches .500, thus the average velocity is .500 feet per second.